Automatic Metric Validation for Grammatical Error Correction

Leshem Choshen and Omri Abend

Hebrew University Jerusalem Israel

17 July 2018

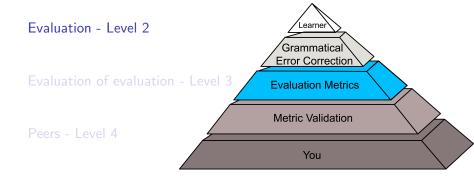
Meta view

The task - Level 1 Evaluation - Level 2 Grammatical **Error Correction Evaluation Metrics** Evaluation of evaluation - Level 32 Metric Validation Peers - Level 4 You

the task

- Input: a text which is perhaps ungramatical
- Output: a grammatical text saying the same meaning/content.

Example: However, there are both sides of stories


The task

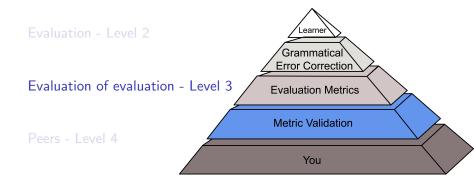
- Input: a text which is perhaps ungrammatical
- Output: a grammatical text saying conveying the same meaning/content.

Example: However , there are both sides of stories \rightarrow However , there are two sides to the story.

The task - Level 1

Test Set

- Learner sentences (perhaps ungrammatical)
- References word edits and the error type corrected by them


Since ancient times , human interact with others face by face . \rightarrow Since ancient times , human humans (Noun number) interact with others face by to (Wrong Preposition) face .

Metrics

There are many suggestions for evaluation metrics: M^2 , GLEU, I-measure, LT, etc. More on that in the paper.

The task - Level 1

Human Rankings

Sentence

- 1 You have become powerful, I sense the dark side in you.
- 2 **Powerful** you have become, I sense the dark side in you.
- 2 You have become powerful, the dark side I sense in you.
- 3 Powerful you have become, the dark side I sense in you.

Existing Metric Validation Human Rankings

- Annotation Humans rank system corrections
 - Two benchmarks GJG15 (Grundkiewicz et al. 2015), and NSPT15 (Napoles et al. 2015).
- Score correlation between metric and human rankings
 - Rank each system by the metric scores of its outputs
 - Rank each system by the human ranks of its outputs
 - Methodologically troublesome
 - Correlate the two

Human Rankings - not a perfect solution

What Machine Translation has already found

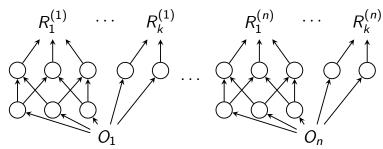
Generation
End Corrector
Evaluation Metrics
Metric Valdation
You

- Costly
- Low agreement
 - Ranking is hard (correcting is easy)
 - Some sentences are uncomparable
- Not detailed
- ...

	Combined		GJG15		NSPT15	
	ρ	P-val	ρ	Rank	ρ	Rank
GLEU	0.771	0.001	0.512	1	0.758	1
LT	0.692	0.006	0.358	4	0.615	3
M^2	0.626	0.017	0.398	3		2
BLEU	0.143	0.626	0.455	2	-0.126	6

Human Rankings (CHR) - inherent biases The vicious loop

- 1. Metrics are favored if they discern high-performing and low-performing **existing** systems
- 2. Systems are fitted against metrics


- Problematic:
 - Systems have similar biases under-correct & favor correcting specific error types (Choshen & Abend 2018)
 - Metrics are evaluated based on distribution of errors in outputs, rather than true distribution

MAEGE

Methodology for Automatic Evaluation of GEC Evaluation

- Annotation Humans correct errors in sentences
 - Widely available regular GEC corpora
- Lattice graded quality
 - Original sentences O_i
 - Partial corrections, apply some edits
 - Reference sentences $R_i^{(j)}$

Human Rankings

Since ancient times , $\frac{1}{2}$ human humans (Noun number) interact with others face $\frac{1}{2}$ to (Wrong Preposition) face .

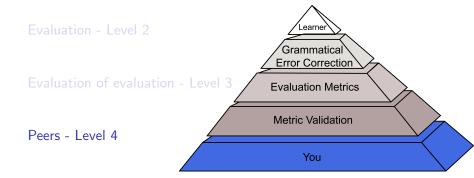
Corrections	Sentence
2	Since ancient times , humans interact with others face to face .
1	Since ancient times , human interact with others face to face .
0	Since ancient times, human interact with others face by face.

Corpus Level

- Models Set of randomly chosen corrections
- Model's score
 - MAEGE score the expected number of applied edits
 - We sample models from the lattices with different distributions
- Score correlation between the two rankings
- Interesting results
 - Positive low correlation with CHR
 - The best metric is LT (number of detected errors)
 - With precision-oriented models MAEGE is similar to CHR
 - Indication that CHR is biased due to precision-oriented models

Types

- 1. Pick sentence pairs with one correction difference
- 2. Find Δ : the change in metric score
- 3. Compute average Δ per type


Types - sensitivity analysis Surprising results

- 1. All metrics penalize for validly correcting certain error types
- 2. Some error types (close class) are more commonly penalized than others (open class)

The task - Level 1

Take-home message

- Metrics emphasize some aspects of the task over others.
 - · Metric validation should tell you which
 - If validation is opaque, metrics and systems may tune towards one another (vicious loop)
- MAEGE breaks the loop by not relying on system outputs
- Instead compile naturally ranked corpus

Take-home message

- Metrics emphasize some aspects of the task over others.
- MAEGE breaks the loop by not relying on system outputs
- Instead compile naturally ranked corpus
- Use MAEGE

Take-home message

- Metrics emphasize some aspects of the task over others.
- MAEGE breaks the loop by not relying on system outputs
- Instead compile naturally ranked corpus
- Use MAEGE

UCCA Semantic Parsing shared task SemEval 2019

