

#### Babble Labble: Training Classifiers with Natural Language Explanations

Braden Hancock, Paroma Varma, Stephanie Wang, Martin Bringmann, Percy Liang, Chris Ré

#### ACL 17 July 2018 Melbourne, Australia

#### Machine learning can help you!\*\*\*



#### \*\*\*If you have enough training data

#### **Traditional Labeling**

#### Example

**Tom Brady** was spotted in New York City on Monday with his wife **Gisele Bündchen** amid rumors of Brady's alleged role in Deflategate.

#### Label

Is person 1 married to person 2?



#### **Time Spent**



#### Reading/Understanding

Clicking Y/N

### Higher Bandwidth Supervision

#### Example

**Tom Brady** was spotted in New York City on Monday with his wife **Gisele Bündchen** amid rumors of Brady's alleged role in Deflategate.

#### Label

Is person 1 married to person 2?



#### **Explanation**

Why do you think so?

Because the words "his wife" are right before **person 2**.

#### Explanations Encode Labeling Heuristics

#### Explanation

Why did you label **True**? Because the words "**his wife**" are right before person 2.



Label Example

- True "Barack batted back tears as he thanked **his wife**, Michelle, for all her help."
- True "Both Bill and **his wife** Hillary smiled and waved at reporters as they rode by."
- True "George attended the event with **his wife**, Laura, and their two daughters."

**Big Idea**: Instead of collecting labels, collect labeling heuristics (in the form of explanations) that can be used to label more examples for free.



A framework for generating large training sets from natural language explanations and unlabeled data

**Result**: classifiers trained with Babble Labble and explanations achieved the same F1 score as ones trained with traditional labels while requiring **5–100x** fewer user inputs

# Babble Labble Framework



**EXPLANATIONS** 

### **Explanations Encode Heuristics**

#### **Explanation**

Why did you label True?

Because the words "his wife" are right before person 2.



#### Labeling Function

```
def f(x):
    return 1 if ("his wife" in left(x.person2, dist==1))
        else 0 #abstain
```

## Semantic Parser



Labeling Function Template:

def LF(x):
 return [label] if [condition] else [abstain]

## Predicates

|                      | Predicate                                             | Description                                                                                                                  |
|----------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Logic & Comparison   | <pre>bool, string, int, float, tuple, list, set</pre> | Standard primitive data types                                                                                                |
| Logic & Companson    | and, or, not, any, all, none                          | Standard logic operators                                                                                                     |
|                      | $=, \neq, <, \leq, >, \geq$                           | Standard comparison operators                                                                                                |
|                      | lower, upper,<br>capital, all_caps                    | Return True for strings of the corresponding case                                                                            |
| String Matching      | starts_with,<br>ends_with,<br>substring               | Return True if the first string starts/ends with or contains the second                                                      |
| NER Tags             | person, location,<br>date, number,<br>organization    | Return True if a string has the corresponding NER tag                                                                        |
|                      | alias                                                 | A frequently used list of words<br>may be predefined and referred<br>to with an alias                                        |
| Sets & Mapping       | count, contains,<br>intersection                      | Operators for checking size,<br>membership, or common ele-<br>ments of a list/set                                            |
|                      | map, filter                                           | Apply a functional primitive to<br>each member of list/set to<br>transform or filter the elements                            |
|                      | word_distance,<br>character_distance                  | Return the distance between<br>two strings by words or charac-<br>ters                                                       |
| Relative Positioning | left, right,<br>between, within                       | Return as a string the text that is<br>left/right/within some distance<br>of a string or between two des-<br>ignated strings |

# Semantic Parser I/O



Goal: produce the *correct* parse



# Babble Labble Framework



**EXPLANATIONS** 

Filter Bank



# Semantic Filter

#### Example

**x1:** Tom Brady was spotted in New York City on Monday with his wife Gisele Bündchen amid rumors of Brady's alleged role in Deflategate.

#### **Explanation**

True, because the words "his wife" are right before person 2.

#### **Candidate Labeling Functions**

"right before" = "to the right of"

def LF\_1b(x):
 return (1 if "his wife" in
 right(x.person2) else 0

```
LF_1b(x1) == 0 🗶
```

("his wife" is not to the right of person 2)

"right before" = "immediately before"

```
def LF_1a(x):
    return (1 if "his wife" in
    left(x.person2, dist==1) else 0)
```

LF\_1a(x1) == 1 🗸

("his wife" is, in fact, 1 word to the left of person 2)

# Pragmatic Filters

How does the LF label our unlabeled data?



# Babble Labble Framework



**EXPLANATIONS** 

# Label Aggregator



# Label Aggregator





Data Programming: (Ratner, et al. NIPS 2016) As implemented in: snorkel.stanford.edu

18

# Babble Labble Framework



**EXPLANATIONS** 

# **Discriminative Classifier**



Labeling functions generate noisy, conflicting votes Resolve conflicts, re-weight & combine Generalize beyond the labeling functions

### Generalization

#### Task: identify disease-causing chemicals

Keywords mentioned in LFs: "treats", "causes", "induces", "prevents", ...

Highly relevant features learned by discriminative model: "could produce a", "support diagnosis of", ...

Training a discriminative model that can take advantage of additional useful features not specified in labeling functions boosted performance by **4.3 F1** points on average (10%).

### Datasets

| Name    | # Unlabeled | Sample Explanations                                                                                              |
|---------|-------------|------------------------------------------------------------------------------------------------------------------|
| Spouse  | 22k         | Label true because "and" occurs between X<br>and Y and "marriage" occurs one word after<br>person1.              |
| Disease | 6.7k        | Label true because the disease is immediately after the chemical and "induc" or "assoc" is in the chemical name. |
| Protein | 5.5k        | Label true because "Ser" or "Tyr" are within 10 characters of the protein.                                       |

# Results

| Task    | F1<br>Score | Babble Labble<br># Explanations | Traditional Labels<br># Labels | Reduction in<br>User Inputs |
|---------|-------------|---------------------------------|--------------------------------|-----------------------------|
| Spouse  | 50.1        | 30                              | 3000+                          | <mark>100x</mark>           |
| Disease | 42.3        | 30                              | 1000+                          | <mark>33x</mark>            |
| Protein | 47.3        | 30                              | 150+                           | <mark>5x</mark>             |

Classifiers trained with Babble Labble and explanations achieved the same F1 score as ones trained with traditional labels while requiring **5–100x** fewer user inputs

# Utilizing Unlabeled Data



With labeling functions, training set size (and often performance) scales with the amount of *unlabeled* data we have.

#### Filter Bank Effectiveness

| Task    | Babble Labble<br>(No Filters) | Babble Labble | % Incorrected<br>Parses Filtered |
|---------|-------------------------------|---------------|----------------------------------|
| Spouse  | 15.7                          | 50.1          | 97.8%                            |
| Disease | 39.8                          | 42.3          | 96.0%                            |
| Protein | 38.2                          | 47.3          | 97.0%                            |
| AVERAGE | 31.2                          | 46.6          | 96.9%                            |

The filters removed almost **97%** of incorrect parses.

Without the filters removing bad parses, F1 drops by **15 F1** points on average.

### Perfect Parsers Need Not Apply

| Task    | Babble Labble | Babble Labble<br>(Perfect Parses) |
|---------|---------------|-----------------------------------|
| Spouse  | 50.1          | 49.8                              |
| Disease | 42.3          | 43.2                              |
| Protein | 47.3          | 46.8                              |
| AVERAGE | 46.6          | 46.8                              |

Using perfect parses yielded negligible improvements. In this framework, for this task, a naïve semantic parser is good enough!

# Limitations

"Alice beat Bob in the annual office pool tournament."



Users' reasons for labeling are sometimes high-level concepts that are hard to parse.

## Related Work: Data Programming

#### Common theme:

Use weak supervision (e.g., labeling functions) to generate training sets

- Snorkel (Ratner et al., VLDB 2018)
  - Flagship platform for dataset creation from weak supervision
- Structure Learning (Bach et al., ICML 2017)
  - Learning dependencies between correlated labeling functions
- **Reef** (Varma and Ré, In Submission)
  - Auto-generating labeling functions from a small labeled set

snorkel.stanford.edu

#### Related Work: Explanations as Features

(Srivastava et al., 2017)

What if we use our explanations to make features instead of training labels?



Using the parses to label training data instead of as features boosts 4.5 F1 points.

# Related Work: Highlighting

Highlight key phrases in text:

(Zaidan and Eisner, 2008), (Arora and Nyberg, 2009)

Mark key regions in images:

(Ahn et al., 2006)

Label key features directly:

(Druck et al., 2009), (Raghavan et al., 2005), (Liang et al., 2009)

**Tom Brady** was spotted in New York City on Monday with his wife Gisele Bündchen amid rumors of Brady's alleged role in Deflategate.

Benefits of natural language approach:

- more options: e.g., "X is **not** in the sentence", "X **or** Y is in the sentence"
- more direct credit assignment (compared to highlighting)
- no feature set required a priori

Summary

We need more efficient ways to collect supervision

We can collect labeling heuristics instead of labels

Using this approach, training set size grows with the amount of *unlabeled* data we have

https://github.com/HazyResearch/babble







# **EXTRA SLIDES**

## **Dataset Statistics**

| Task    | Train | Dev  | Test | % Pos. |
|---------|-------|------|------|--------|
| Spouse  | 22195 | 2796 | 2697 | 8%     |
| Disease | 6667  | 773  | 4101 | 20%    |
| Protein | 5546  | 1011 | 1058 | 22%    |

## Babble Labble Framework

| Unlabeled Examples + Explanations                                                                                                 | Labeling Functions                                                                                                     | Filters                                        | Label Matrix                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|
| Label whether person 1 is married to person 2                                                                                     | <pre>def LF_1a(x):     return (1 if "his wife" in</pre>                                                                | Correct                                        | x <sub>1</sub> x <sub>2</sub> x <sub>3</sub> x <sub>4</sub>  |
| X <sub>1</sub> Tom Brady and his wife Gisele Bündchen were                                                                        | <pre>left(x.person2, dist==1) else 0)</pre>                                                                            |                                                |                                                              |
| of Brady's alleged role in Deflategate.                                                                                           | <pre>def LF_1b(x):     return (1 if "his wife" in     right(x.person2) else 0</pre>                                    | Semantic<br>Filter                             | LF <sub>2b</sub> -1                                          |
| True, because the words "his wife" are right before person 2.                                                                     |                                                                                                                        | (Inconsistent)                                 |                                                              |
|                                                                                                                                   | <pre>def LF_2a(x):     return (-1 if x.person1 in</pre>                                                                | Pragmatic<br>Filter<br>(always true)           |                                                              |
| X <sub>2</sub> None of us knows what happened at Kane's<br>home Aug. 2, but it is telling that the NHL has not<br>suspended Kane. | <pre>x.sentence and x.person2 in<br/>x.sentence else 0)</pre>                                                          |                                                | $\begin{array}{                                    $         |
|                                                                                                                                   | <pre>def LF_2b(x):     roturn ( 1 if x percent ==</pre>                                                                | Correct                                        |                                                              |
| False, because person 1 and person 2 in the sentence are identical.                                                               | x.person2) else 0)                                                                                                     |                                                | ÿ <u>+ +</u>                                                 |
|                                                                                                                                   | <pre>def LF_3a(x):</pre>                                                                                               |                                                | Noisy Labels Classifier                                      |
| insurance businessman Gary Kirke did not attend<br>the event.                                                                     | <pre>return (-1 if<br/>x.person1.tokens[-1] !=<br/>x.person2.tokens[-1] else 0)</pre>                                  | Correct                                        | $(x_1, \tilde{y}_1)$                                         |
| False, because the last word of person 1 is different than the last word of person 2.                                             | <pre>def LF_3b(x):     return (-1 if not (         x.person1.tokens[-1] ==         x.person2.tokens[-1]) else 0)</pre> | Pragmatic<br>Filter<br>(duplicate<br>of LF_3a) | $(x_2, y_2)$<br>$(x_3, \tilde{y}_3)$<br>$(x_4, \tilde{y}_4)$ |

## Babble Labble Framework





IMPORTANT: No Babble Labble components require no labeled training data!

# Babble Labble

#### Example

**Tom Brady** was spotted in New York City on Monday with his wife **Gisele Bündchen** amid rumors of Brady's alleged role in Deflategate.

#### Label

Is person 1 married to person 2?



#### Explanation

Why do you think so?

Because the words "his wife" are right before person 2.

#### **Labeling Function**

```
def LF1(x):
    return (1 if "his wife" in left(x.person2, dist==1)
        else 0)
```

