Semi-supervised Geolocation via Graph Convolutional Networks

Afshin Rahimi, Trevor Cohn and Tim Baldwin

July 16, 2018

Location Lost in Translation

Applications: Public Health Monitoring

Allergy Rates (Paul and Dredze, 2011)

Applications: Emergency Situation Awareness: Bushfires, Floods and Earthquakes

Fight bushfire with #fire: Alert hospital before anybody calls (Cameron et al., 2012)

Location Location Location

Profile field is noisy (Hecht et. al, 2011), GPS data is scarce (Hecht and Stephens, 2014), and biased toward younger urban users (Pavalanathan and Eisenstein, 2015)

Geolocation: The three Ls

User geolocation is the task of identifying the "home" location of a social media user using contextual information such as geographical variation in **language use** and in **social interactions**.

• Huge amounts of unlabelled data, little labelled data

• Multiple views of Data: Text, Network

Previous Work (not exhaustive)

Our work: Text+Network Semi-supervised Geolocation

Twitter Geolocation Datasets

Discretisation of Labels

- Cluster continuous lat/lon: cluster ids are labels.
- Use the median training point of the predicted region as the final continuous prediction.
- **Evaluate** using Mean and Median errors between the known and the predicted coordinates.

Text and Network Views of Data

Two users are connected if they have a common @-mention.

- Concatenate A and X, and feed them to a DNN:
 Y = f ([X, A])
- The dimensions of *A*, and consequently the number of parameters grow with the number of samples.

Baseline 2: DCCA

Learn a shared representation using Deep Canonical Correlation Analysis (Andrew et al., 2013): $\rho = \operatorname{corr}(f_1(X), f_2(A)) = \frac{\operatorname{cov}(f_1(X), f_2(A))}{\sqrt{\operatorname{var}(f_1(X)).\operatorname{var}(f_2(A))}}$ $Y = f\left([f_1(X), f_2(A)]\right)$

Proposed Model: GCN

Adding more layers results in expanded neighbourhood smoothing: control with highway gates W_h^l, b_h^l

Highway GCN: Control Neighbourhood Smoothing

layer gates:
$$T(\vec{h}') = \sigma \left(W'_h \vec{h}' + b'_h \right)$$

layer output: $\vec{h}'^{+1} = \underbrace{\vec{h}'^{+1} \circ T(\vec{h}') + \vec{h}' \circ (1 - T(\vec{h}'))}_{\text{weighted sum of layer input and output}}$

 $15 \, / \, 25$

Neighbourhood Smoothing

Normalised Adj. Matrix: A

Text BoW: X

Smoothing immediate neighbourhood: $A \cdot X$ smoothing expanded neighbourhood: $A \cdot A \cdot X$

Sample Representation using t-SNE

Test Results: Median Error

Test Results: Median Error

Test Results: Median Error

Contrilo 14/4	Austin TV		Calumbus OU
Seattle, WA	Austin, TA	Jacksonville, FL	Columbus, OH
#goseahawks	stubb	unf	laffayette
smock	gsd	ribault	#weareohio
traffuck	#meatsweats	wahoowa	#arcgis
ferran	lanterna	wjct	#slammin
promissory	pupper	fscj	#ouhc
chowdown	effaced	floridian	#cow
ckrib	#austin	#jacksonville	mommyhood
#uwhuskies	Imfbo	#mer	beering

Top terms for a few regions detected by GCN using only 1% of $\rm TWITTER\text{-}US$ for supervision. The terms that existed in labelled data are removed.

Dev. Results: How much labelled data do we really have?

100

Confusion Matrix Between True Location and Predicted Location

 Users from smaller states are misclassified in nearby larger states such as TX, NY, CA, and OH. • Users from FL are misclassified in several other states possibly because they are not born in FL, and are well connected to their hometowns in other states.

- Simple concatenation in FeatConcat is a strong baseline with large amounts of labelled data.
- GCN performs well with both large and small amounts of labelled data by effectively using unlabelled data.
- Gating mechanisms (e.g. highway gates) are essential for controlling neighbourhood smoothing in GCN with multiple layers.
- The models proposed here are applicable to other demographic inference tasks.

Thank you!

Code available at: https://github.com/afshinrahimi/geographconv