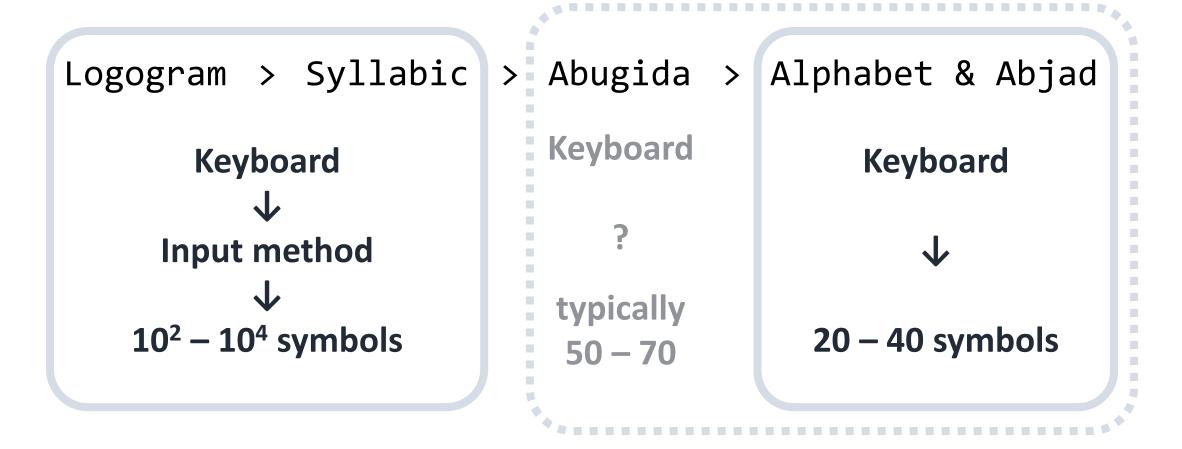

Simplified Abugidas

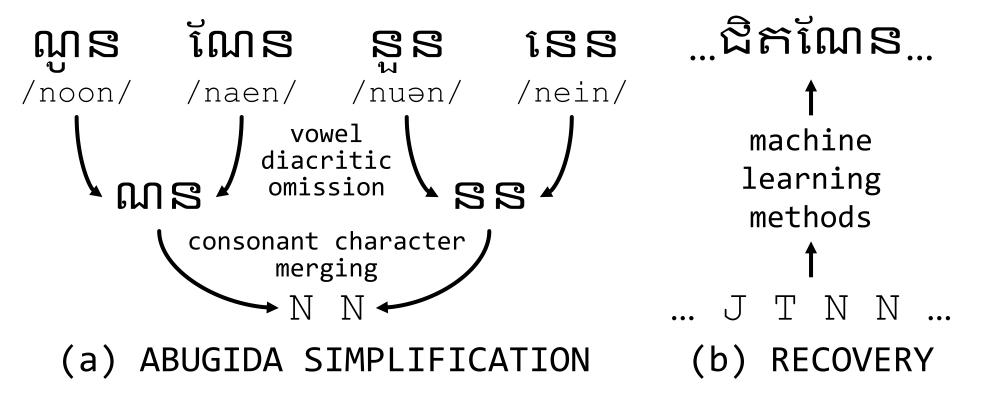

Chenchen Ding, Masao Utiyama, and Eiichiro Sumita ASTREC, NICT, Japan Writing Systems : Hierarchy


Writing Systems : Population

s am syllabic …… abugida **10⁹ ← 10**⁹ logogram phonogram — segmental { **10**9 — alphabet **10**⁸ abjad

Writing Systems : How to Input

Writing Systems : How to Input


Motivation of This Study

- Can abugidas be inputted more efficiently?
 - \rightarrow To insert a light layer of input method
 - \rightarrow To type less and to recover automatically
- Related work
 - \rightarrow Various approaches for Chinese and Japanese

 \rightarrow To take advantage of redundancy in a writing system

Outline of This Study

• Khmer script as an example

Abugida Simplification

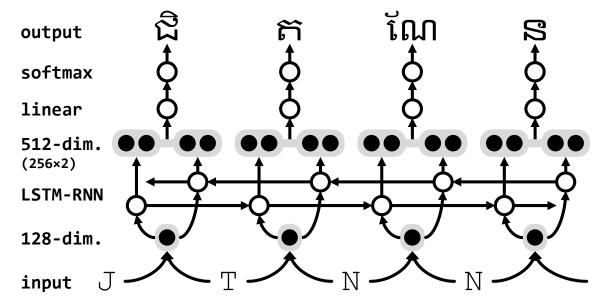
- Four Brahmic abugidas
 - Thai, Burmese (Myanmar), Khmer (Cambodian), and Lao
- Based on phonetics / conventional usages \rightarrow reduced to 21 symbols

ĒD	GUTTURAL		PALATE				DENTAL			LABIAL			Щ	Ш	Æ	Þ. C.	A-	PRE-V.			
ERG	PLO	SIVE	AS.	PLO	SIVE	NAS.	APP.	PLOS		NAS.	APP.	PLOS		NAS.	APP.	R-LIKE	S-LIKE	H-LIKE	ZERO-C.	LONG-A	DE-V.
Σ	I	II	Ż	I	II	Z	4	I	II	Z	4	I	II	Z	A		•,		Z	Ľ	
MN	К	G	U	C	J		Υ	Т	D	Ν	L	Р	В	Μ	W	R	S	Н	Q	Α	E
TH	กขฃ	คฅฆ	৩	ຈລ	ชชฌ	រ្ស	٤	ฏฏฐดตถ	ฑฒทธ	ณน	ລ໗ฬ	บปผฝ	พฟภ	ม	3	รฤ	ศษส	หพั	อ	רר	เแโใไ
MY	ကခ	ဂဃ	С	စဆ	ဖဈ	ဉ ည	ယျ	ဋဌတထ	ဥဎဒဓ	ဏန	လဠ	ပဖ	ဗဘ	မ	၀ွ	ရြ	သဿ	က္	အ	ါဘ	္၆
КМ	កខ	គឃ	ង	ជជ	ដឈ	ញ	យ	ដឋតថ	ខឍទធ	៣ន	លឡ	បដ	ពភ	ម	วิ	រ	គមស	ហ	ห	ា	Ç
LO	ກຂ	ຄ	ງ	ବ	ຊ	ຍ	క	ດຕຖ	ហ	ນ	ລ	ບປຜຝ	ພຟ	ມ	ວ	ຣ	ສ	ຫຮ	ව	າ	ددد ۱۶ کا
			รั	້ ຳ	ិ ី ី	ି ୂ ୂ		0 0	\ •		៝៝៓៓	ិ៍ ី ុ ្ជ	្ ើ៍ 1	ើរ	ៀ	េ ែ	ំ	ಕ	໌ ຳ	ී ී	៓៝៝៓៝
OM	ITTEC	D TH	਼	ំ ់	ॕ ऀ ॒॔	ఄఄఄఀఄ	MY	ိ ိ ု ူ ေ	$\circ \circ \circ \circ \circ$: KM		<u>ി ് ഃ</u>						^{LO} ி	្ធ រ	់ ំំំ	ి ే ్ ి

Abugida Simplification

- Khmer script as an example
 ដ៏តំណែន = ដ + ៌ + តំ + ណ + i + S → J T N N
 Leng. = len ("J T N N")
 len ("ដ ˆ ត ណ i S")

 = definition definition


 Thai Burmese Khmer Lao
 Leng. 76.0% 74.0% 77.6% 72.8%
- Around one quarter characters (diacritics) saved

Recovery Methods

- To formulate as a sequential labeling task
 - However, list-wise search as in conditional random fields is costing
- To solve by point-wise classification
 - Support vector machine (SVM) as a baseline
 - Recurrent neural network (RNN) as a state-of-the-art method
- Setting for the SVM baseline
 - Linear kernel with N-gram features
 - Using LIBLINEAR library
 - Wrapped by the KyTea toolkit

RNN Structure and Settings

- Bi-gram of graphemes as input
- Embedding \rightarrow Bi-directional LSTM \rightarrow Linear transform \rightarrow Softmax
- Original writing units as output
- Implemented by DyNet
- Trained by Adam
 - Initial learning rate 0.001
 - Controlled by a validation set
- Multi-model ensemble

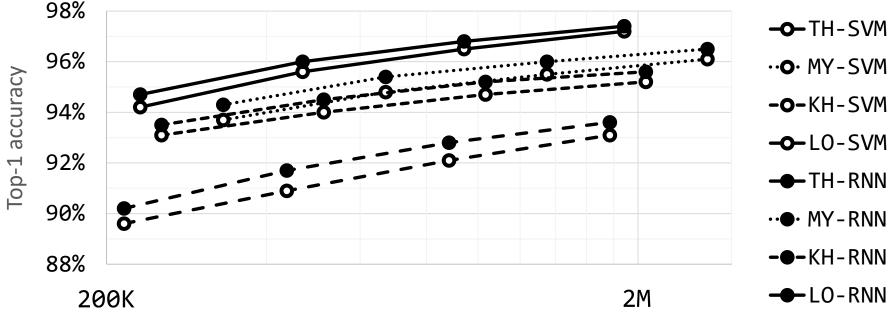
Experimental Results

- Asian Lang. Treebank data
 - 20,000 sent., newswire

• SVM

- Up to 5-gram for TH, KM, LO
- 7-gram for Burmese

• RNN


- **(H)** : M-ensemble
 - \rightarrow 16-ensemble is adequate
- @N : Top-N results
 - \rightarrow Top-**4** is satisfactory

	Thai	Burmese	Khmer	Lao
SVM	97.2%	96.1%	95.2%	93.1%
$RNN_{\oplus 4}^{@1}$	97.2%	$96.3\%^\ddagger$	$95.5\%^\ddagger$	$93.3\%^\ddagger$
$RNN_{\oplus 8}^{@1}$	$97.3\%^\dagger$	$96.4\%^{\ddagger}$	$\mathbf{95.6\%^{\ddagger}}$	$\mathbf{93.6\%^{\ddagger}}$
$RNN_{\oplus 16}^{@1}$	$\mathbf{97.4\%^{\ddagger}}$	$\mathbf{96.5\%^{\ddagger}}$	$\mathbf{95.6\%^{\ddagger}}$	$\mathbf{93.6\%^{\ddagger}}$
$RNN_{\oplus 16}^{@2}$	98.8%	98.4%	97.5%	96.6%
$RNN_{\oplus 16}^{ar{0}4}$	99.2%	98.8%	98.1%	97.7%
$\text{RNN}_{\oplus 16}^{\textcircled{0}8}$	99.2%	98.9%	98.4%	97.9%

† : p < 0.01, ‡ : p < 0.001

→ Embedding + bi-LSTM > N-gram features

Experimental Results : Training Data Size

Number of graphemes after simplification

→ RNN outperforms SVM, regardless of the training data size

Manual Evaluation

- On Burmese and Khmer best results by RNN
- Conducted by native-speakers
- To classify errors into four-level
 - 0. acceptable, i.e., alternative spelling
 - 1. clear and easy to identify the correct result
 - 2. confusing but possible to identify the correct result
 - 3. incomprehensible

Level	0	1	2	3		
Burmese	4.5%	51.0%	42.2%	2.2%		
Khmer	22.5%	28.5%	16.3%	32.8%		

Conclusion and Future Work

- Abugidas can be simplified largely and recovered with high accuracy
 - Four Brahmic abugidas are investigated
 - Simplified into a compact symbol set (around 20 graphemes)
 - Recovered satisfactorily by standard machine learning method
 - \rightarrow Experimentally show the feasibility to encode abugidas in a lossy manner
- Future work
 - Language specific investigation
 - To integrate dictionary
 - To develop practical input method for abugidas

Thanks for your kind attention