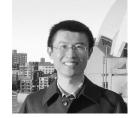


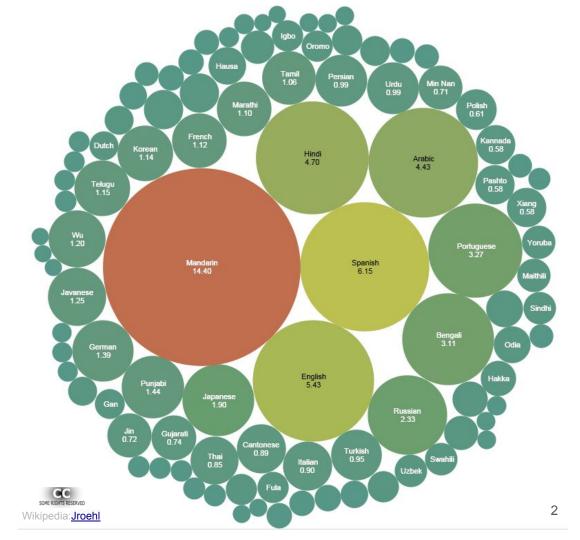
Massively Multilingual Transfer for NER

Afshin Rahimi, Yuan Li, and **Trevor Cohn** University of Melbourne



6000+ languages

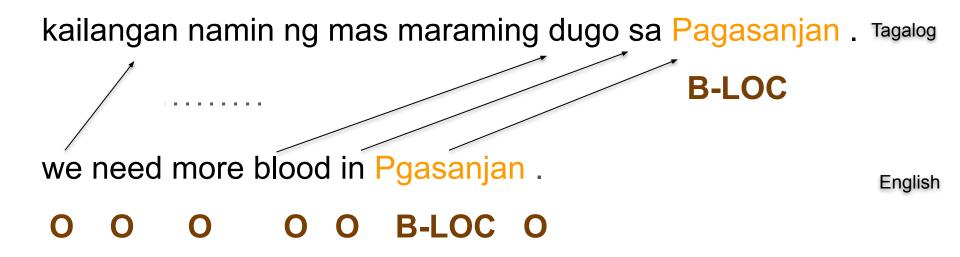
≈ **1%** with annotation



Emergency Response

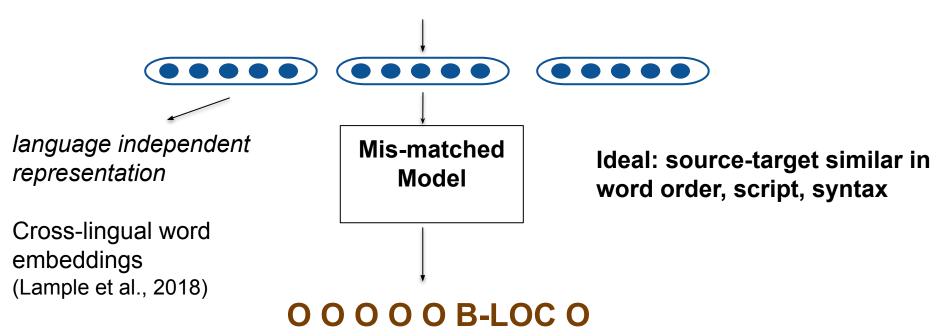
Named Entity Recognition

Annotation Projection for Transfer



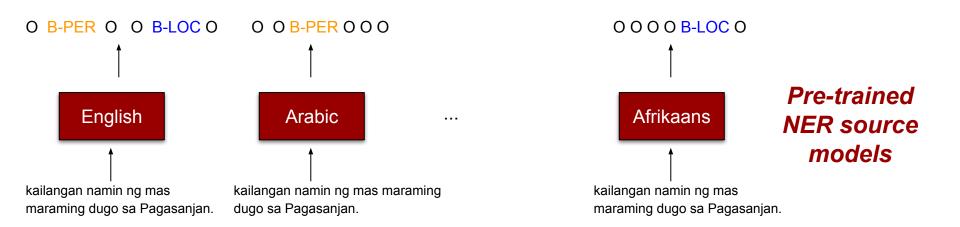
Representation Projection for Transfer

kailangan namin ng mas maraming dugo sa Pagasanjan .



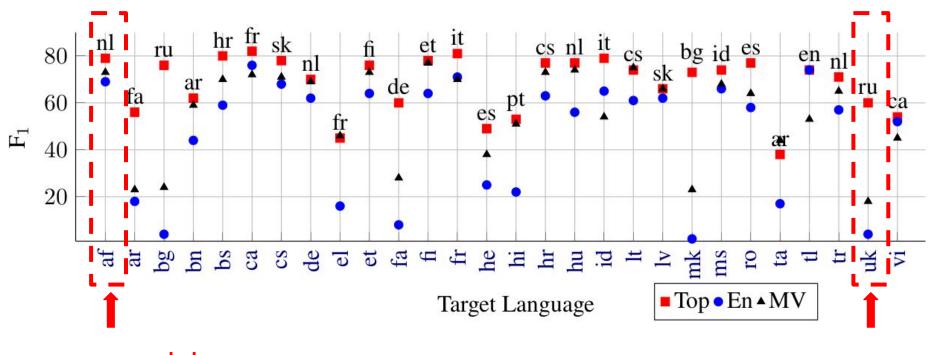
Direct Transfer for NER

Output: Labelled sentences in the target language



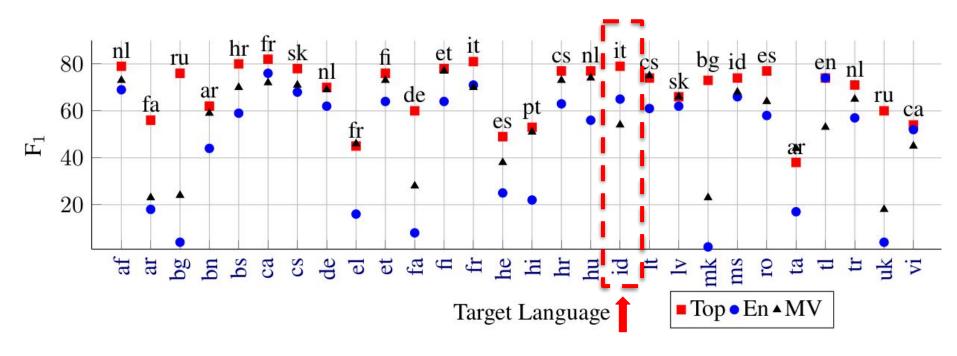
Input: Unlabelled sentences in the target language encoded with cross-lingual embeddings

Direct Transfer Results (NER F1 score, WikiANN)



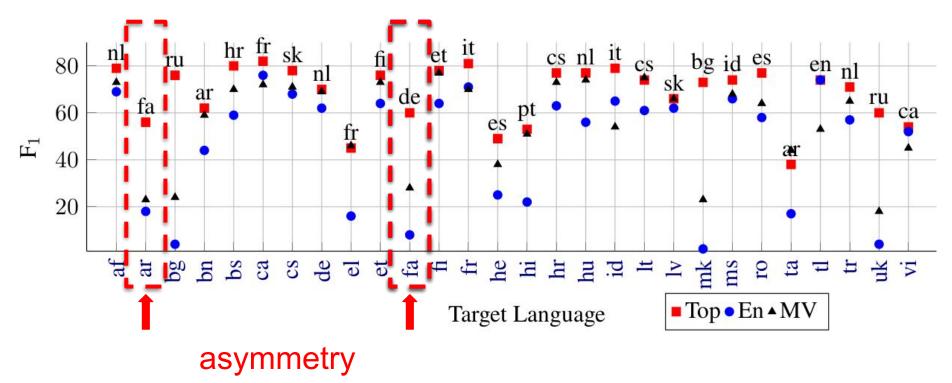
unsuprising

Direct Transfer Results (NER F1 score, WikiANN)

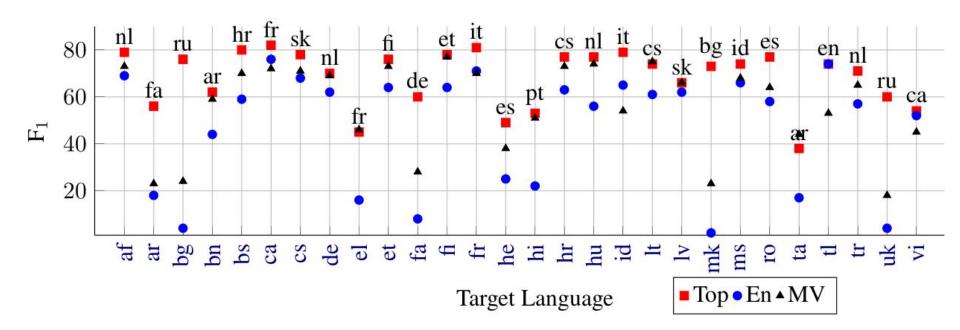


unrelated

Direct Transfer Results (NER F1 score, WikiANN)

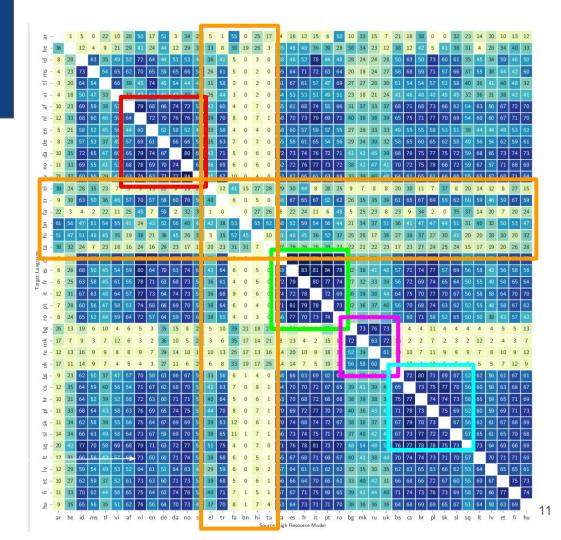


Voting & English are often poor!



General findings

- Transfer strongest within language family (Germanic, Roman, Slavic-Cyr, Slavic-Latin)
- Asymmetry between use as source vs target language (Slavic-Cyr, Greek/Turkish/...)
- But lots of odd results & overall highly noisy



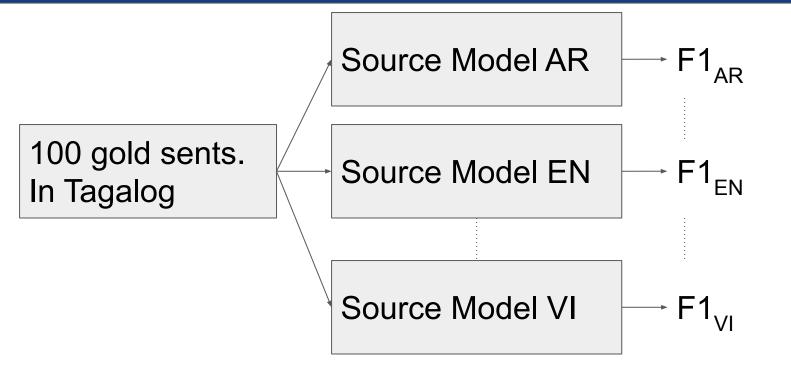
Problem Statement

Input:

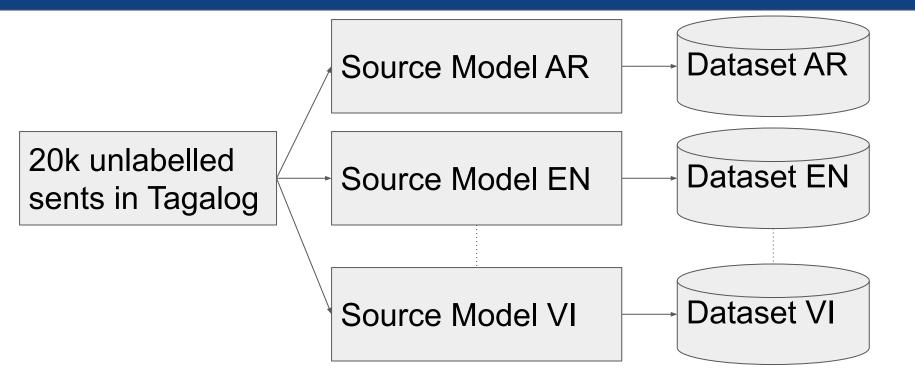
- N black-box source models
- Unlabelled data in target language
- Little or no labelled data (few shot and zero shot)

Output:

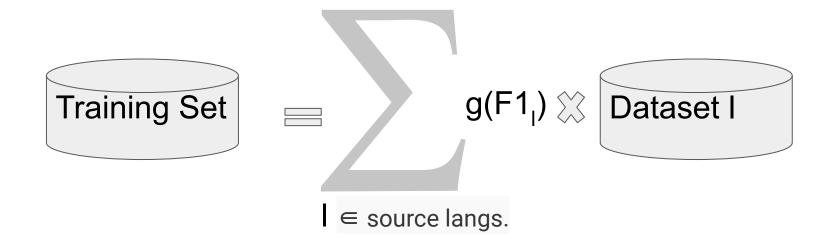
• Good predictions in the target language



Source model qualities



N training sets in Tagalog 14

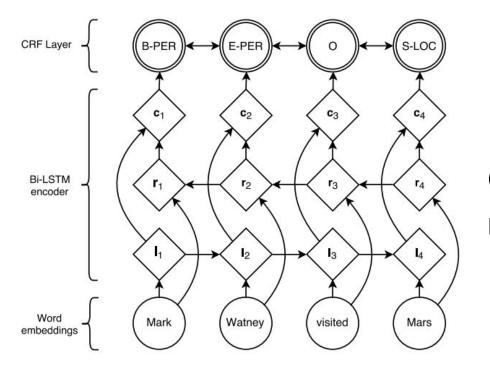


Final training set, a mixture of distilled knowledge

- 1. Train an NER model on the mixture datasets.
- 2. Fine-tune on 100 gold samples.

Zero-shot variant: uniform sampling without fine-tuning (**RaRe_{uns}**)

Hierarchical BiLSTM-CRF as model



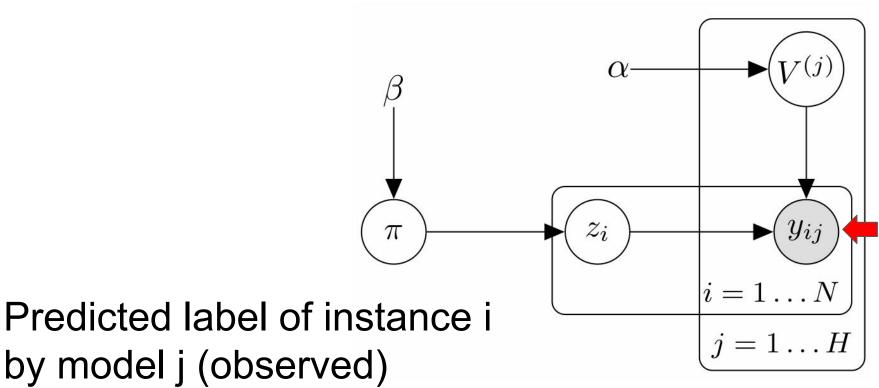
Our method is **independent** of model choice.

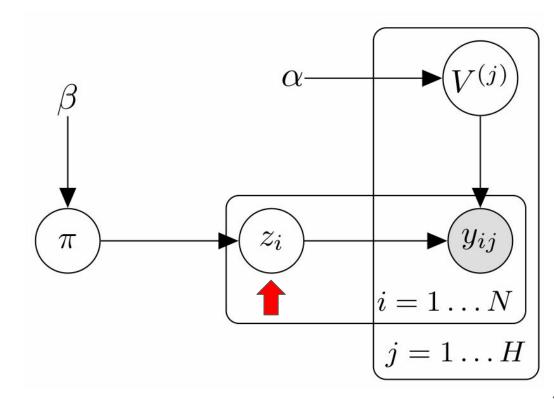
Lample et al., (2016)

What if no gold labels are available?

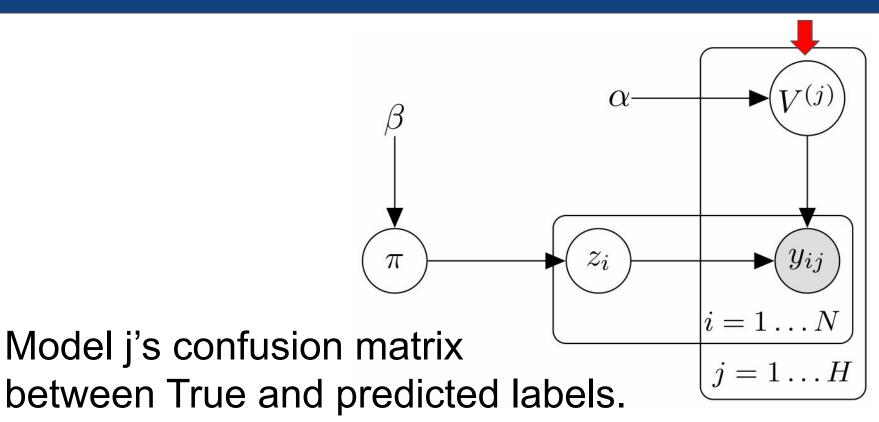
- 1. Treat gold labels Z as hidden variables
- 2. Estimate Z that best explains all the observed predictions
- 3. Re-estimate the quality of source models

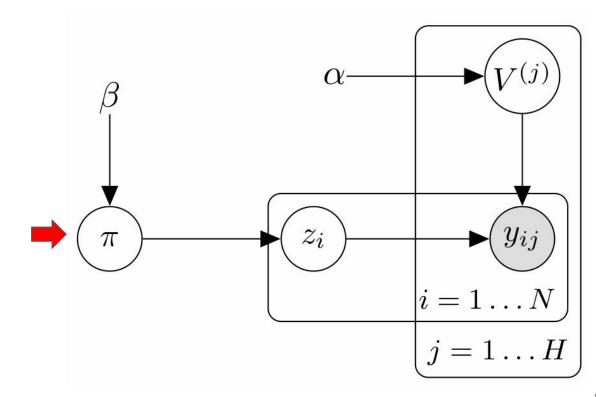
Inspired by Kim and Ghahramani (2012)



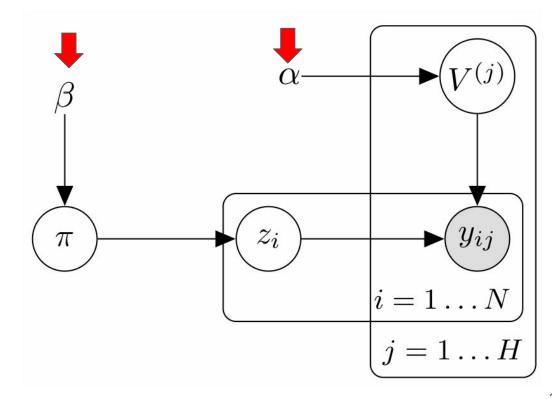


True label of instance i



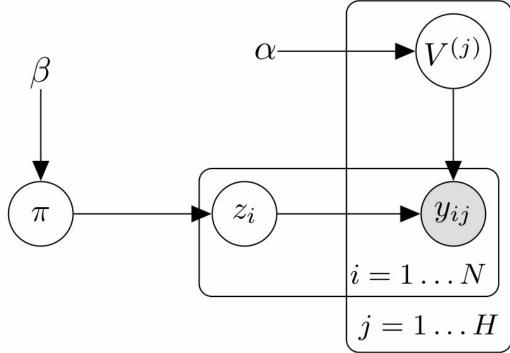


Categorical Distribution



Uninformative Dirichlet Priors

Find Z to maximises $P(Z|Y,\alpha,\beta)$, using variational mean-field approx.



24

Warm-start with MV.

Extensions to BEA

1. Spammer removal:

After running BEA, estimate source model qualities and remove bottom k, run BEA again (**BEA**_{unsx2})

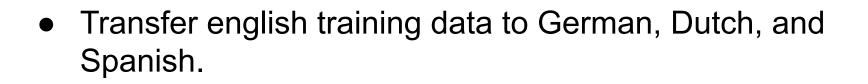
2. Few shot scenario:

Given 100 gold sentences, estimate source model confusion matrices, then run BEA (BEA_{sup})

3. Token vs Entity application

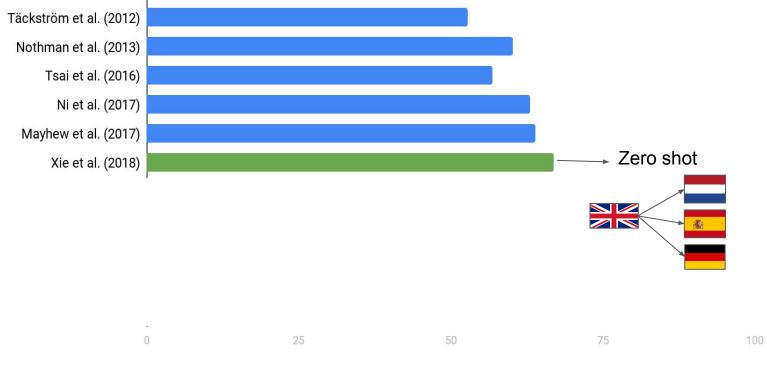
Benchmark: BWET (Xie et al., 2018)

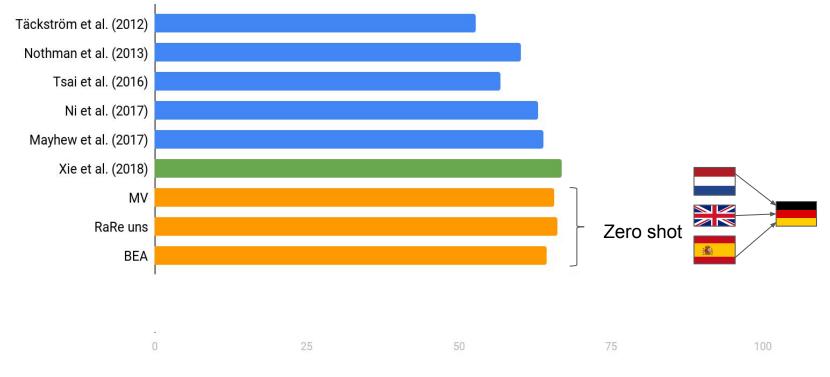
Single source annotation projection with bilingual dictionaries from cross-lingual word embeddings



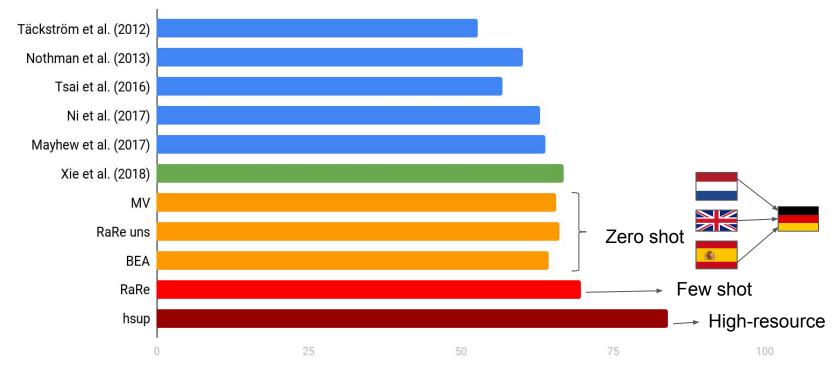
• Train a transformer NER on the projected training data.

State-of-the-art on zero-shot NER transfer (orthogonal to this)





AVG F1 over de, nl and es



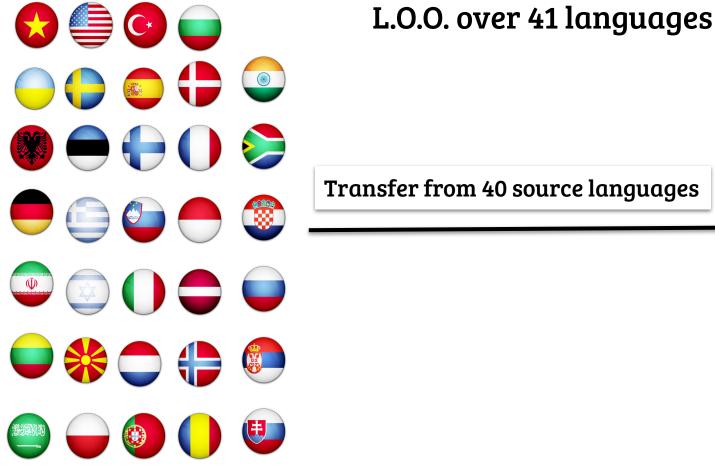
AVG F1 over de, nl and es

WIKIANN NER Datasets (Pan et al., 2017)

- Silver annotations from Wikipedia for 282 languages.
- We picked **41** languages based on availability of bilingual dictionaries.
- Created balanced training/dev/test partitions (varying size of training according to data availability)

github.com/afshinrahimi/mmner

L.O.O. over 41 languages



Transfer from 40 source languages

L.O.O. over 41 languages

L.O.O. over 41 languages

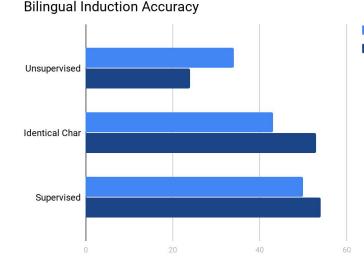
Transfer from 40 source languages

Word representation: FastText/MUSE

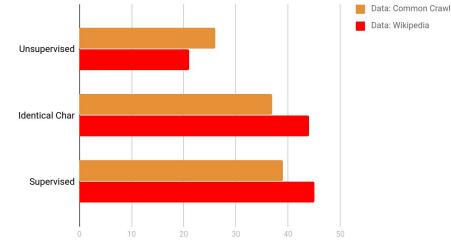
Use fasttext monolingual wiki embeddings mapped to English space using Identical Character Strings.

Data: Common Crawl

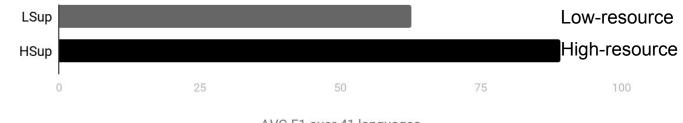
Data: Wikipedia

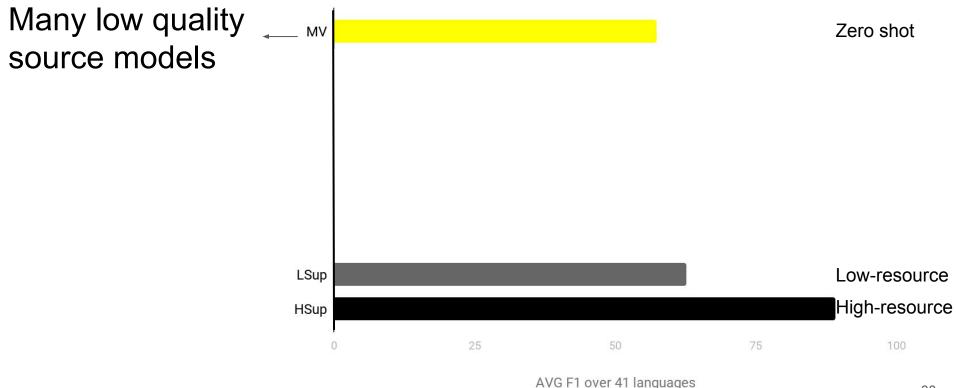


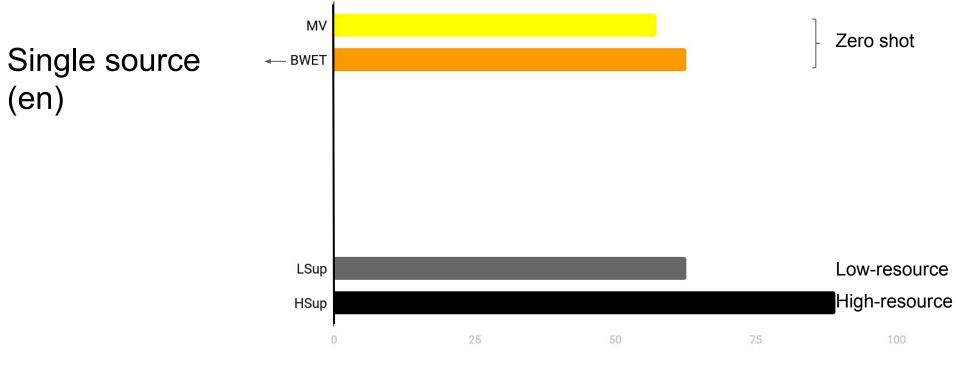
Direct Transfer F1 averaged over 41 languages

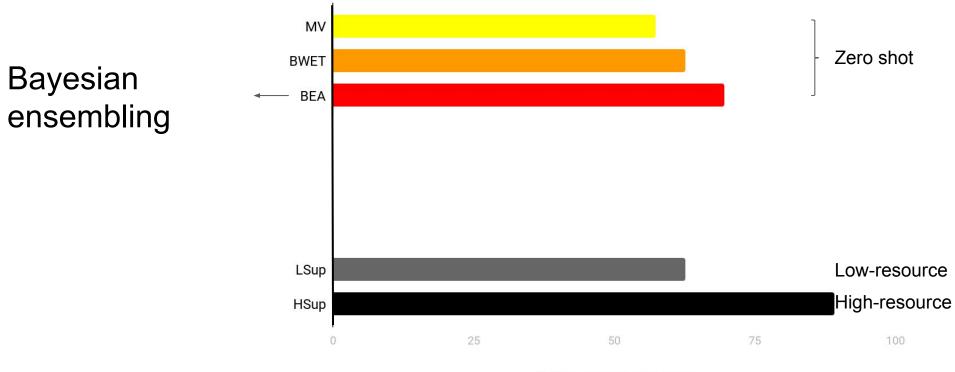


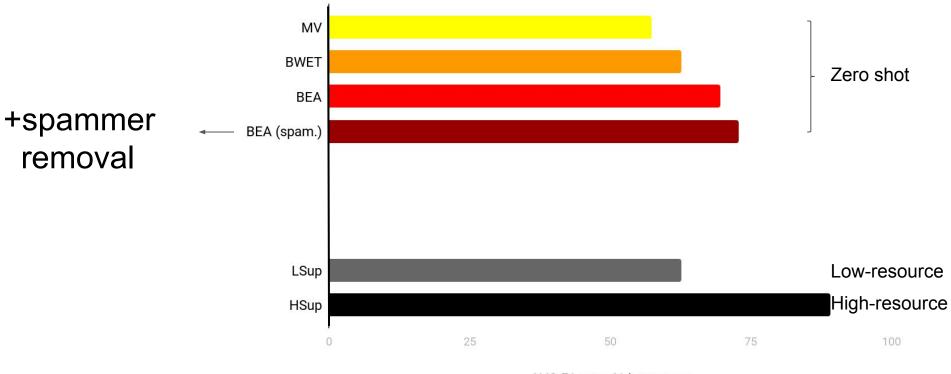
Supervised: no transfer

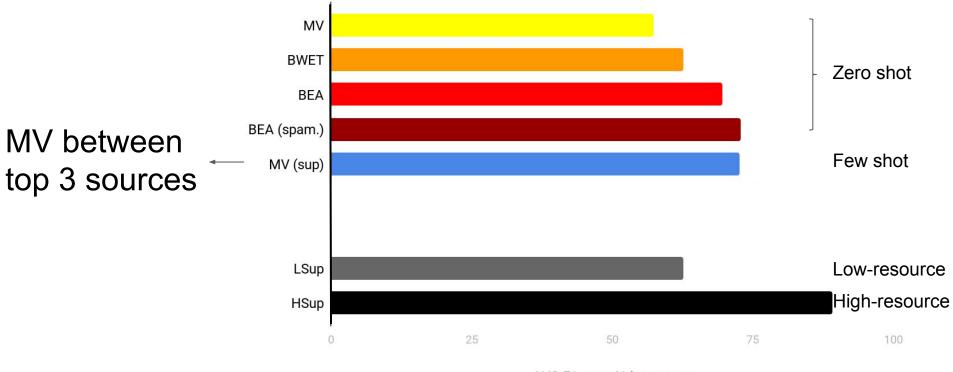


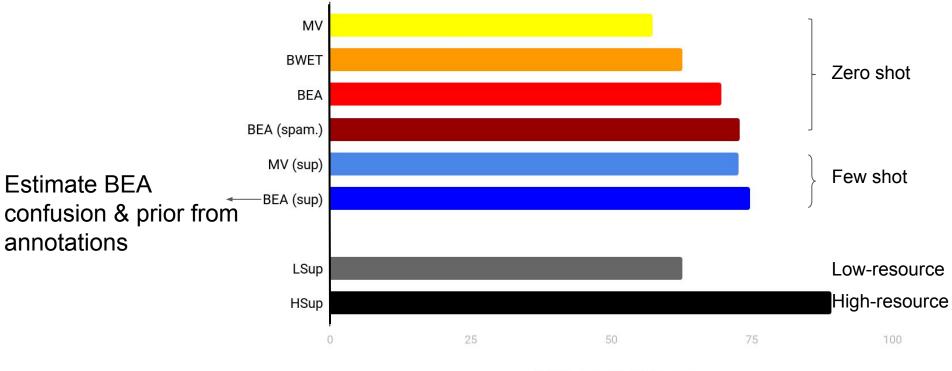


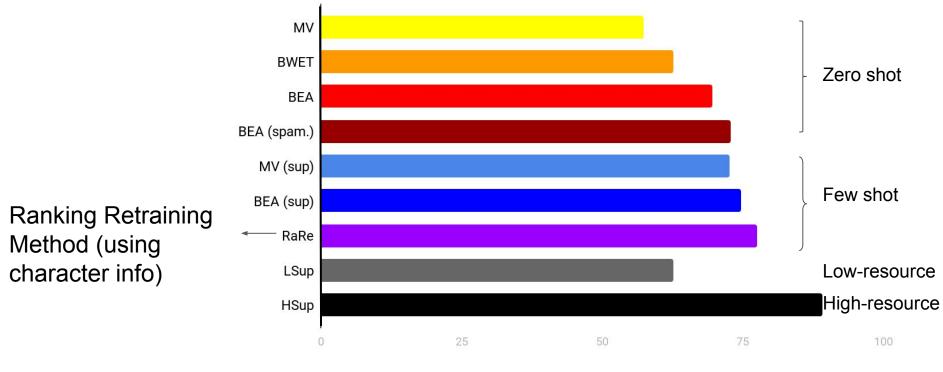








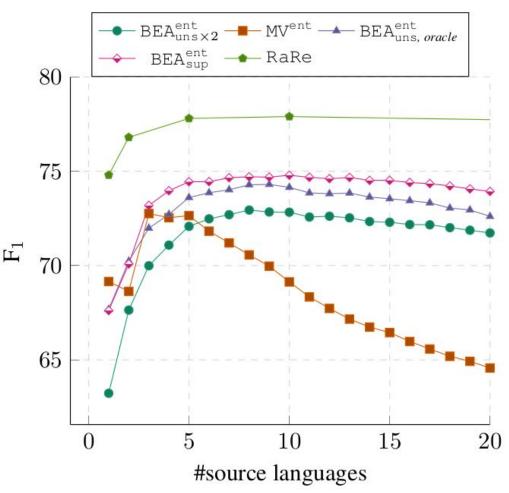




Effect of increasing #source languages

Methods robust to many varying quality source languages.

Even better with few-shot supervision.



Takeaways I

Transfer from multiple source languages helps because for many languages we don't know the best source language.

takeaway / noun [uk/aus/nz]: a meal cooked and bought at a shop or restaurant but taken somewhere else... Cambridge English Dictionary

Takeaways II

With multiple source languages, you need to estimate their qualities because uniform voting doesn't perform well.

takeaway / noun [uk/aus/nz]: a meal cooked and bought at a shop or restaurant but taken somewhere else... Cambridge English Dictionary

Takeaways III

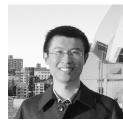
A small training set in target language helps, and can be done cheaply and quickly (Garrette and Baldridge, 2013).

takeaway / noun [uk/aus/nz]: a meal cooked and bought at a shop or restaurant but taken somewhere else... Cambridge English Dictionary

Thank you!



0.0



[≈]github.com/afshinrahimi/mmner

Future Work

- Map all scripts to IPA or Roman alphabet
 - (good for shared embeddings and character-level transfer)
 - uroman: Hermjakob et al. (2018)
 - epitran: Mortensen et al. (2018)
- Can we estimate the quality of source models/languages for a specific target language based on language characteristics (Littell et al., 2017)?
- Technique should apply beyond NER to other tasks.