
A Appendix
A.1 Details on Gromov Hausdorff
We briefly outline the procedure for computing the
Bottleneck distance here. An interested reader can
find further details at Edelsbrunner and Morozov
(2013).

Computing the Gromov-Hausdorff distance in-
volves solving hard combinatorial problems, but
can be tractably approximated using the Bottle-
neck distance (Chazal et al., 2009). In order
to compute the Bottleneck distance between two
metric spaces, we compute the first order Vietoris-
Rips complex (first order for computational effi-
ciency) at t for both spaces: a graph containing
an edge between two points iff they lie within a
Euclidean distance t from each other in the metric
space. As t is varied, the Vietoris-Rips complex
goes from the individual points (at t = 0) to a sin-
gle cluster (at t = 1). As t increases, clusters
are formed (birth) and eventually merge together
(death). The persistence diagram is a 2D plot of
the (tbirth, tdeath) of each cluster, where tbirth and
tdeath are the values of t at which the cluster was
born and died respectively. Given two persistence
diagrams f, g, let � be a bijective map from the
points of f to the points of g. The bottleneck dis-
tance (B) is then defined as:

B(f, g) = inf
�
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Chazal et al. (2009) showed that the Gromov-
Hausdorff distance can be lower bounded by the
Bottleneck Distance between the Persistence Di-
agrams of the Vietoris-Rips Filtration of the two
spaces.

A.2 Analyzing Model Errors
We characterize the mistakes made by the model,
and find that most fall into the following 4 cate-
gories:

Polysemy on the target side: These are the
cases in which the predicted words and the gold
translation are synonyms/hypernyms/hyponyms
of each other.

Polysemy on the source side: These are the
cases in which the gold translations and the pre-
dicted words are different senses of the source
word.

Antonyms: The distribution of the context of
antonyms is often very similar. Unsurprisingly the

word vectors of antonyms are quite similar. This
leads to cases where the predicted words and gold
labels are antonyms of each other.

Words that occur in common contexts:
Words that occur in numerous contexts often have
poor word embeddings, since a single embedding
can’t capture polysemy. Consequently, multiple
such word embeddings that are frequent and have
poor representations often get incorrectly trans-
lated to each other. Some examples include proper
nouns and numbers

We quantitatively estimate the fraction of er-
rors due to these reasons using WordNet synsets.
Given 2 synsets, WordNet provides a score denot-
ing how similar two word senses are, based on the
shortest path that connects the senses in the is-a
(hypernym/hypnoym) taxonomy. The score is in
the range 0 to 1. A score of 1 represents identity
i.e. comparing a sense with itself will return 1.
We approximate the fraction of target polysemy
errors by finding those cases for which the afore-
mentioned similarity scores between the synsets
of the predicted words and the gold translations
� 0.1. Similarly we approximate the fraction of
source polysemy errors by finding those cases for
which the similarity scores between the synsets of
the source word and the predicted word� 0.1. Fig
3 shows these estimations for different language
pairs. See Table 6 for examples sampled from each
of these error types.

A.3 � orthogonality projection vs.
autoencoding loss

Lample et al. (2018) constrained the mapping ma-
trix to be close to the manifold of orthogonal ma-
trices by applying the following projection step af-
ter every update.

W  (1 + �)W � �(WW T )W

In our experiments we found out that the final ac-
curacy is highly sensitive to the value of the hyper-
parameter � (Table 7). Our approach on the other
hand uses an autoencoding loss which allows the
model to flexibly adjusts the degree of orthogonal-
ity in a data driven manner and works consistently
well for one choice of the scaling of the autoen-
coding loss.

A.4 Hyper-Parameters
The following are the hyper parameters used in the
experiments. The values separated by / are the dif-
ferent values tried in the parameter search.



Figure 3: Fraction of errors coming from polysemy in the source/target side and antonymy, for the language pairs
en-zh, en-it, en-es and en-fr

Type of Error Source Gold Predicted Comments
Target Polysemy Shadows qP 4q synonyms
Target Polysemy Quest Quest Avventura synonyms
Source Polysemy Worn usé vêtement Gold: used, Predicted: cloth
Source Polysemy Bitter Ê õ£ Gold: bitter (taste), predicted: bitter (feeling)
Antonyms Unofficial Ufficiale Funzionario funzionario: official
Antonyms Mature Mature Jeune Jeune: young
Antonyms Afraid Paura Contento Gold: fear, Predicted: happy
Common Words Everybody Jeder Spaß Gold: Everybody, Predicted: Fun
Common Words Fourteen Vierzehn Dreirzehn Numbers translated incorrectly

Table 6: Sampled Errors

Lang Ortho � Auto1e-2 1e-3 1e-4

en-de 19.9 74.8 67.4 73.7 74.3
en-ru 102.5 40.8 30.7 36.7 46.1
en-zh 171.1 0 23.8 32.1 33.3

Table 7: Unsupervised accuracies for different values
of � (MUSE) and our autoencoding loss.

• Number of words per language considered
for GAN training: top 75000

• Discriminator Parameters:

– embedding dim: 300
– hidden layers: 2
– hidden dim: 2048, 2048
– dropout prob: 0.1 (Only on the input

layer)
– label smoothing: 0.1
– non-linearity: LeakyReLU (↵ = 0.2)

• Generator Parameters

– Initialization: Identity / Random Or-
thogonal

– Mean Center: True

• GAN Training Parameters

– batch size: 32
– Optimizer: SGD
– Supervised loss optimizer: SGD / Adam
– lr: 0.1 (with a schedule of 0.98 decay

per round, and halved if unsupervised
CSLS metric does not improve over two
rounds).

– Hubness Threshold: 20

• fa = cosine


