

# Results of the fifth edition of the BioASQ Challenge

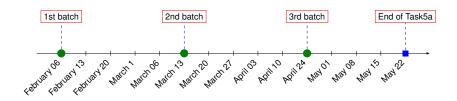
A. Nentidis, K. Bougiatiotis, A. Krithara, **G. Paliouras** and I. Kakadiaris

NCSR "Demokritos", University of Houston

4th of August 2017

BioNLP Workshop, Vancouver

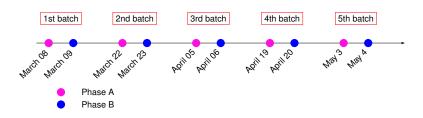



## Introduction What is BioASO

## A competition

- BioASQ is a series of challenges on biomedical semantic indexing and question answering (QA).
- Participants are required to semantically index content from large-scale biomedical resources (e.g. MEDLINE) and/or
- to assemble data from multiple heterogeneous sources (e.g. scientific articles, knowledge bases, databases)
- to compose informative answers to biomedical natural language questions.

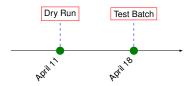
### Task A: Hierarchical text classification


- Organizers distribute new unclassified MEDLINE articles.
- ▶ Participants have 21 hours to assign **MeSH terms** to the articles.
- Evaluation based on annotations of MEDLINE curators.



**Tasks** 

## Task B: IR, QA, summarization


- Organizers distribute English biomedical questions.
- Participants have 24 hours to provide: relevant articles, snippets, concepts, triples, exact answers, ideal answers.
- Evaluation: both automatic (GMAP, MRR, Rouge etc.) and manual (by biomedical experts).



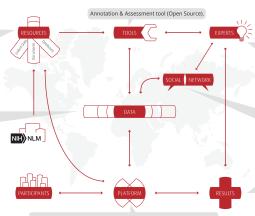
New task

## Task C: Funding Information Extraction

- Organizers distribute PMC full-text articles.
- Participants have 48 hours to extract: grant-IDs, funding agencies, full grants (i.e. the combination of a grant-ID and the corresponding funding agency).
- Evaluation based on annotations of MEDLINE curators.



#### BioASQ ecosystem




 PubMed articles.
 MeSH, Gene Ontology, UniProt, Jochem, Disease Ontology.

Task A: 12,800,000 articles with MeSH headings available for training. New test batches available every week.

Task B: 2,300 English questions, plus gold relevant documents, snippets, concepts, triples, "exact", and "ideal" answers.

Task C: 80,000 articles with corresponding funding information.

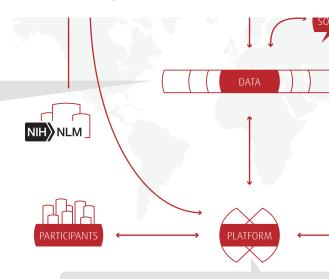


Online platform that enables participants to enter the BioASQ challenge.

Biomedical experts, responsible for the formulation of questions, the identification of gold relevant documents, snippets, concepts, triples, the composition of gold "exact" and "ideal" answers, and the manual evaluation of system responses.

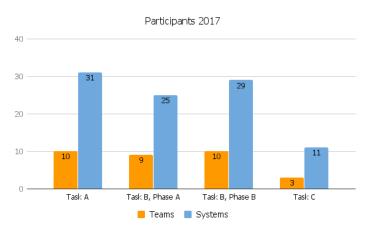
A social network allows biomedical experts to follow and comment upon benchmark questions and gold answers formulated by their peers.

Automated & manual assessment of system responses. Oracles available for objective retrospective benchmarking.




BioASQ ecosystem

**Task A**: 12,800,000 articles with MeSH headings available for training. New test batches available every week.


Task B: 2,300 English questions, plus gold relevant documents, snippets, concepts, triples, "exact", and "ideal" answers.

**Task C**: 80,000 articles with corresponding funding information.



Online platform that enables participants to enter the E





## Task 5A

#### Hierarchical text classification

#### ► Training data

|                    | version 2015 | version 2016 | version 2017 |
|--------------------|--------------|--------------|--------------|
| Articles           | 11,804,715   | 12,208,342   | 12,834,585   |
| Total labels       | 27,097       | 27,301       | 27,773       |
| Labels per article | 12.61        | 12.62        | 12.66        |
| Size in GB         | 19           | 19.4         | 20.5         |

#### ► Test data

| Week  | Batch 1         | Batch 1 Batch 2 |                  |  |  |
|-------|-----------------|-----------------|------------------|--|--|
| 1     | 6,880 (6,661)   | 7,431 (7,080)   | 9,233 (5,341)    |  |  |
| 2     | 7,457 (6,599)   | 6,746 (6,357)   | 7,816 (2,911)    |  |  |
| 3     | 10,319 (9,656)  | 5,944 (5,479)   | 7,206 (4,110)    |  |  |
| 4     | 7,523 (4,697)   | 6,986 (6,526)   | 7,955 (3,569)    |  |  |
| 5     | 7,940 (6,659)   | 6,055 (5,492)   | 10,225 (984)     |  |  |
| Total | 40,119 (34,272) | 33,162 (30,934) | 42,435 ( 21,323) |  |  |

The numbers in parentheses are the annotated articles for each test dataset.

## Task 5A System approaches

- ▶ Feature Extraction: Representing each abstract
  - tf-idf of words and bi-words
  - doc2vec embeddings of paragraphs
- ▶ Concept Matching: Finding relevant MeSH labels
  - ► k-NN between article-vector representations
  - Linear SVM binary classifiers for each MESH label
  - Recurrent Neural Networks for sequence-to-sequence prediction
  - UIMA-ConceptMapper and MeSHLabeler tools for boosting NER and Entity-to-MeSH matching
  - Latend Dirichlet Allocation and Labeled LDA utilizing topics found in abstracts
  - Ensemble methodologies and stacking



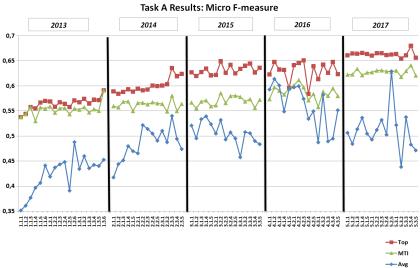
## Task 5A Evaluation Measures

#### Flat measures

- Accuracy (Acc.)
- Example Based Precision (EBP)
- Example Based Recall (EBR)
- Example Based F-Measure (EBF)
- Macro Precision/Recall/F-Measure (MaP. MaR.MaF)
- Micro Precision/Recall/F-Measure (MiP,MIR,MiF)

#### Hierarchical measures

- Hierarchical Precision (HiP)
- ► Hierarchical Recall (HiR)
- Hierarchical F-Measure (HiF)
- Lowest Common Ancestor Precision (LCA-P)
- Lowest Common Ancestor Recall (LCA-R)
- Lowest Common Ancestor F-measure (LCA-F)


A. Kosmopoulos, I. Partalas, E. Gaussier, G. Paliouras and I. Androutsopoulos: Evaluation Measures for Hierarchical Classification: a unified view and novel approaches. Data Mining and Knowledge Discovery, 29:820-865, 2015.



## Task 5A results Evaluation

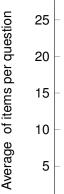
- Systems ranked using MiF (flat) and LCA-F (hierarchical).
- Results, in all batches and for both measures :
  - 1. Fudan
  - 2. AUTH-Atypon

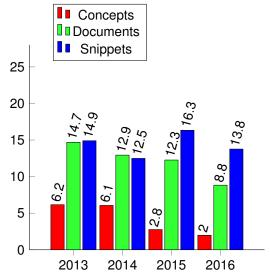
## Task 5A results





## Task 5B Statistics on datasets

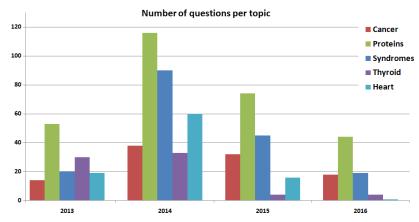

| Batch Size |       | # of documents | # of snippets |
|------------|-------|----------------|---------------|
| Training   | 1,799 | 11.86          | 20.38         |
| Test 1     | 100   | 4.87           | 6.03          |
| Test 2     | 100   | 3.49           | 5.13          |
| Test 3     | 100   | 4.03           | 5.47          |
| Test 4     | 100   | 3.23           | 4.52          |
| Test 5     | 100   | 3.61           | 5.01          |
| total      | 2.299 |                |               |


The numbers for the documents and snippets refer to averages

#### Training Dataset Insights



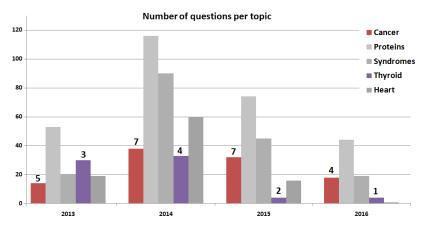
- ▶ 500 yes/no
- 486 factoid
- 413 list
- ▶ 400 summary
- ▶ 13 Experts
- ► ≈ **3450** unique biomedical concepts








#### Training Dataset Insights


- Broad terms (e.g. proteins, syndromes)
- ▶ More specific terms (e.g. cancer, heart, thyroid)





#### Training Dataset Insights

- Number of questions related to cancer vs thyroid per year
- ▶ The numbers on top of the bars denote the contributing experts





#### **Evaluation measures**

Evaluating Phase A (IR)

| Retrieved items | Unordered retrieval measures         | Ordered retrieval measures |  |  |
|-----------------|--------------------------------------|----------------------------|--|--|
| concepts        |                                      |                            |  |  |
| articles        | Mean Precision, Recall, F-Measure    | MAP. GMAP                  |  |  |
| snippets        | iviean recision, necall, r-ivieasure | WAF, CIVIAI                |  |  |
| triples         |                                      |                            |  |  |

Evaluating the 'exact' answers for Phase B (Traditional QA)

| Question type | Participant response   | Evaluation measures               |
|---------------|------------------------|-----------------------------------|
| yes/no        | 'yes' or 'no'          | Accuracy                          |
| factoid       | up to 5 entity names   | strict and lenient accuracy, MRR  |
| list          | a list of entity names | Mean Precision, Recall, F-measure |

Evaluating the 'ideal' answers for Phase B (Query-focused Summarization)

| Question type | Participant response | Evaluation measures                          |
|---------------|----------------------|----------------------------------------------|
| any           | paragraph-sized text | ROUGE-2, ROUGE-SU4, manual scores*           |
|               |                      | (Readability, Recall, Precision, Repetition) |

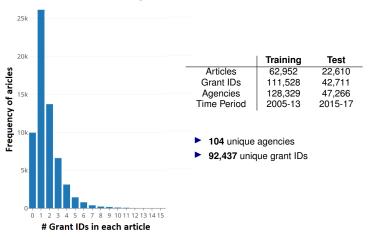
<sup>\*</sup>with the help of BioASQ Assessment tool.



#### System approaches

- Question analysis: Rule-based, regular expressions, ClearNLP, Semantic role labeling (SRL), Stanford Parser, tf-idf, SVD, word embeddings.
- Query expansion: MetaMap, UMLS, sequential dependence models, ensembles, LingPipe.
- Document retrieval: BM25, UMLS, SAP HANA database, Bag of Concepts (BoC), statistical language model.
- ➤ **Snippet selection**: Agglomerative Clustering, Maximum Marginal Relevance, tf-idf, word embeddings.
- Exact answer generation: Standford POS, PubTator, FastQA, SQuAD, Semantic role labeling (SRL), word frequencies, word embeddings, dictionaries, UMLS.
- Ideal answer generation: Deep learning (LSTM, CNN, RNN), neural nets, Support Vector Regression.
- Answer ranking: Word frequencies.

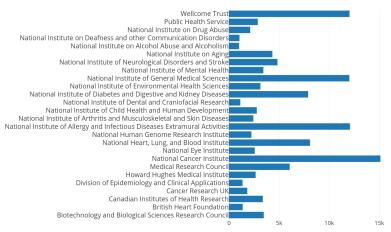



## Task 5B Results

- Our experts are currently assessing systems' responses
- ▶ The results will be announced in autumn



## Task 5C Statistics on datasets


#### Grant ID distribution in training data set



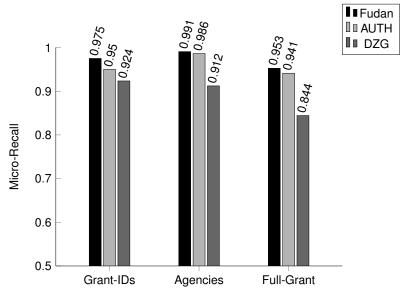


### Task 5C Statistics on datasets

#### Number of articles per agency in training dataset






## Task 5C Evaluation measures

- ► A **subset** of the Grant IDs and Agencies mentioned in full text are available in ground truth data → **Micro-Recall** 
  - ► Each Grant ID (or lone Agency) must exist verbatim in the text
- Different scores for each subtask:
  - Grant IDs
  - Agencies
  - Full Grants

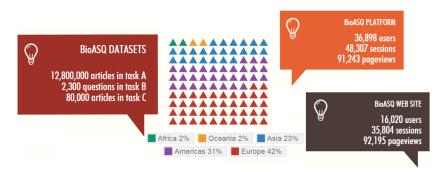
## Task 5C System approaches

- Grant Support Sentences: Identifying sentences containing grant information
  - ► Features: tf-idf of n-grams
  - Techniques: SVM and Naive Bayes for scoring, specific XML fields considered
- Grant Information Extraction: Detecting Grant-IDs and Agencies
  - Manually crafted Regular Expressions
  - Heuristic Rules
  - Sequential Learning Models, such as Conditional Random Fields, Hidden Markov Models, Max Entropy Models
  - Ensemble of classifiers for pairing Grant-IDs to Agencies

## Task 5C Results






## Challenge Participation Overall



## Conclusions and Prespectives

## Goals and perspectives

- BioASQ will run in 2018.
- Continuous development of benchmark datasets.





## Conclusions and Prespectives

#### Oracle for continuous testing



Select the task you are submitting results for.

Specify the test set by choosing one from the drop down menu. The tests sets for both tasks can be downloaded from here and are those that been already used for the BioASQ challenge.

Select one of your systems that will be used in the "Oracle Results" tab.

Select a file to upload that contains a ISON string with the answers of a test. The format of the ISON is described in the online guidelines of each task, e.g. here.

Submit

Submit

Attention: Calculating the evaluation results takes several minutes. Please, do not refresh the content.

#### Results

Annotated documents: 627 out of 3130.

Please, take a look at the results below and fill the following form:

Keep my results visible:

If enabled, your uploaded results will be visible in the oracle to any registered user. Otherwise, it will be visible only to you.

Save my score: database

If enabled, it will replace the previous score for the selected system and testset in the BioASO

| riat measures |                    |   |        |        |        |        |        |        |        |        |        |        |
|---------------|--------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|               | System             | • | MiF 🕶  | Acc. ▼ | EBP ▼  | EBR ▼  | EBF ▼  | MaP ▼  | MaR ▼  | MaF ▼  | MiP ▼  | MiR 🕶  |
|               | auth1              |   | 0.5954 | 0.4247 | 0.5887 | 0.6133 | 0.5793 | 0.5659 | 0.4776 | 0.4593 | 0.5948 | 0.5959 |
|               | Current Submission |   | 0.5817 | 0.4091 | 0.5843 | 0.5994 | 0.5641 | 0.5481 | 0.4821 | 0.4634 | 0.5794 | 0.5841 |
|               | d33p               |   | 0.5746 | 0.3978 | 0.6150 | 0.5473 | 0.5507 | 0.5626 | 0.3897 | 0.3811 | 0.6143 | 0.5397 |
|               | Default MTI        |   | 0.5854 | 0.4165 | 0.6036 | 0.5934 | 0.5711 | 0.5369 | 0.5173 | 0.4960 | 0.5967 | 0.5745 |



## Collaborations

#### ► NLM

- Task A design and baselines
- Task C design and baselines

#### ► CMU

OAQA Baselines for task B

#### DBCLS

 BioASQ and PubAnnotation: Using linked annotations in biomedical question answering (BLAH3)

#### iASiS

 Question answering over big heterogeneous biomedical data for precision medicine











## Grateful to the BioASQ consortium

BioASQ started as a European FP7 project, with the following partners:

- National Centre for Scientific Research "Demokritos" (GR)
- Transinsight GmbH (DE)
- Universite Joseph Fourier (FR)
- University Leipzig (DE)
- Universite Pierre et Marie Curie Paris 6 (FR)
- Athens University of Economics and Business Research Centre (GR)













## **Sponsors**

#### PLATINUM SPONSOR



SILVER SPONSOR



## Stay Tuned!

Visit www.bioasq.org Follow @BioASQ

BioASQ 6 to be announced soon!

