Challenge Test Sets for MT Evaluation
– tutorial description –

Maja Popović and Sheila Castilho
ADAPT Centre
School of Computing, DCU
Ireland
{firstname.lastname}@adaptcentre.ie

Abstract

1. What are challenge test sets (test suites)?
 • difference between standard test sets and challenge test sets
 • brief overview of the history
2. Overview of existing challenge test sets
 • implicit challenge test sets
 • designed challenge test sets
 • testing NMT components
3. Practical aspects of developing a challenge test set
 • how to decide what to evaluate
 • how to generate entries
 • how to ensure a straightforward evaluation

1 What are challenge test sets (test suites)?

The main difference between natural (standard) and challenge test sets lies in the distribution of particular phenomena. The traditional “natural” test sets have uneven distribution of different specific (linguistic) phenomena and therefore are not suitable for getting insight into some particular phenomena. Certain (linguistic or other) phenomena might be under-represented, whereas some others might be over-represented, even repetitive. Challenge test sets (also called "test suites"), on the other hand, have a good coverage of phenomena of interest, however they do not reflect the statistical distribution of phenomena encountered in naturally occurring data. Therefore, the best strategy for evaluating MT system(s) is to use both natural test sets related to the desired genre/domain as well as challenge test sets covering specific phenomena of interest.

First challenge test sets (CTS) were developed in early 90s for probing syntactic competence of grammar-based MT (and other natural language processing) systems (King and Falkedal, 1990; Way, 1991; Arnold et al., 1993; Lehmann et al., 1996). The emergence of statistical systems suppressed their usage relying mainly on evaluation on standard natural test sets. In the recent years, the idea of using CTS to obtain more fine-grained qualitative observations about MT systems has revived, especially with the emergence of neural machine translation. Nowadays, CTS are not restricted only to syntax, but can cover a broad set of different aspects.

2 Overview of existing challenge test sets

Implicit challenge test sets

A specialised test set can be created implicitly, with no intention to specifically generate a challenging test set. Such test sets are often created as a by-product of evaluation process on standard test sets, for example by evaluating on a subset of a natural test set which contains desired phenomena, such as German compound words (Popović et al., 2006; Escartín, 2012), adjective-noun or verb reorderings (Popović and Ney, 2006), or language features related to gender (Vanmassenhove et al., 2018). These test sets, however, do not necessarily represent well the distribution of the phenomena of interest.
Designed challenge test sets

A number of test sets have been explicitly designed for particular phenomena in the last years, especially since the emergence of the “Additional Test Suites” sub-task in the framework of the WMT translation shared task in 2018.

Some of the first “revived” test suites cover a large taxonomy with different categories, such as (Burchardt et al., 2017; Macketanz et al., 2018; Avramidis et al., 2019) for German-to-English and (Isabelle et al., 2017) for English-to-French.

Other test sets concentrate on one broad phenomenon and several sub-categories within it, such as grammatical (Sennrich, 2017; Cinková and Bojar, 2018) or morphological divergences (Burlot and Yvon, 2017; Burlot et al., 2018), or discourse phenomena (Šoštarić et al., 2018; Bawden et al., 2018; Bojar et al., 2019; Voita et al., 2019). Another type concentrates on one particular phenomenon and one or more of its potential variations, for example ambiguity of pronouns (Guillou and Hardmeier, 2016; Guillou et al., 2018; Müller et al., 2018; Bawden et al., 2018), lexical ambiguity of nouns (Rios Gonzales et al., 2017; Rios Gonzales et al., 2018; Raganato et al., 2019), ambiguous conjunctions (Popović and Castilho, 2019; Popović, 2019), or gender bias for nouns related to professions (Stanovsky et al., 2019).

Various language pairs and translation directions have been covered, almost always including English as one of the languages: French (Isabelle et al., 2017; Guillou and Hardmeier, 2016; Popović and Castilho, 2019; Popović, 2019), German (Burchardt et al., 2017; Müller et al., 2018; Rios Gonzales et al., 2018; Burlot et al., 2018; Popović and Castilho, 2019; Popović, 2019), Czech (Burlot and Yvon, 2017; Burlot et al., 2018; Cinková and Bojar, 2018; Bojar et al., 2019; Raganato et al., 2019), Latvian (Burlot and Yvon, 2017), Lithuanian (Raganato et al., 2019), Finnish (Burlot et al., 2018; Raganato et al., 2019), Russian (Raganato et al., 2019; Voita et al., 2019), Serbian, Croatian, Spanish, Portuguese (Popović and Castilho, 2019), Turkish (Burlot et al., 2018).

Some of the test sets are constructed and evaluated fully manually (Isabelle et al., 2017; Burchardt et al., 2017), whereas some others fully rely on automatic generation and evaluation process without any human inspection and intervention (Burlot and Yvon, 2017; Burlot et al., 2018; Raganato et al., 2019; Stanovsky et al., 2019). The majority of the test suites relies, to a greater or lesser proportion, both on automatic and on manual processes.

The majority of the designed challenge test sets are publicly available.

Testing NMT components

The most recent trend of evaluating specific aspects in an NMT model are so called “probing tasks”. The goal of these tasks is to test the outputs of different neural network components in order to determine whether the (linguistic) information of interest is well captured in the obtained (word, sentence or other) representations. A probing task is a simple classification problem focused on desired phenomena, and requires a task which represents well these phenomena. This classification task needs an appropriate data set which represents well the property of interest and is large enough to be split into training and validation part for the classifier.

Several layers of RNN-based NMT systems have been tested on morphology, syntax and semantics (Belinkov et al., 2017a; Belinkov et al., 2017b; Durrani et al., 2019) using a corresponding tagging tasks (POS, syntactic and semantic tagging). The main findings are that lower layers are better capable of capturing morphology whereas semantics is better represented in higher layers.

3 Practical aspects of developing a challenge test set

Although the CTSs can be quite different depending on the main goals of evaluation, on the amount and types of phenomena they contain, as well as on the languages they cover, they all have certain common practical aspects to be taken into account.

Deciding on phenomena of interest

The decision about what to evaluate exactly is far from trivial. One of the factors is the main goal of the evaluation: understanding a particular phenomenon, understanding a particular system, comparing different technologies, investigating different languages, etc. Furthermore, this decision can be reached top-down (start from theoretically problematic concepts) (Burchardt et al., 2017; Isabelle et al., 2017) or bottom-up (start from concepts which are found to be problematic in natural test sets) (Šoštarić et al., 2018; Voita et al., 2019).
Construction process

Once the categories to evaluate are determined, creating entries in an CTS can be performed in different ways: collecting natural data samples which contain desired phenomena, editing and paraphrasing natural entries, or completely inventing ("artificial"). Furthermore, depending on the phenomena and application, some CTS should contain only entries with phenomena of interest, whereas some should also contain contrastive (negative) entries where the phenomena of interest are absent, or entries which contain some errors. Additional point of view is whether the CTS should be model agnostic (suitable for comparison of different technologies), or designed for evaluating development of a specific architecture. Last but not least, the evaluation procedure should be as straightforward as possible, especially if it involves manual inspection.

4 Presenters

Maja Popović
ADAPT Centre, Dublin City University, Ireland
maja.popovic@adaptcentre.ie
https://www.adaptcentre.ie/about/team

Maja Popović is a post-doctoral researcher at the ADAPT Centre at Dublin City University. She graduated at the Faculty of Electrical Engineering, University of Belgrade, Serbia, and continued her studies at the RWTH Aachen University, Germany, where she obtained her PhD with the thesis "Machine Translation: Statistical Approach with Additional Linguistic Knowledge". After that, she continued her research at the German Institute for Artificial Intelligence (DFKI), at the Humboldt University of Berlin, and currently at the ADAPT Centre at Dublin City University. Her research interests include machine translation, automatic and human evaluation in NLP, as well as combining linguistic knowledge and data-driven methods. She published over 60 papers in various conferences, workshops and journals, including a book chapter about machine translation evaluation. She serves as regular programme committee member of ACL/EACL/NAACL, EMNLP, COLING, LREC and other conferences and workshops for more than 10 years. She has been a co-organiser of the Workshop on The Qualities of Literary Machine Translation at MT Summit 2019 and the Workshop on Quality Assessment for Text Simplification at LREC 2016, tutorial chair at ACL 2017 and area chair at EAMT and COLING 2018. She is a guest co-editor of the special issue of Machine Translation Journal on Human Factors in Neural Machine Translation published in 2019 by Springer. She gave several invited talks and lectures about evaluation for machine translation and other NLP tasks.

Sheila Castilho
ADAPT Centre, Dublin City University, Ireland
sheila.castilho@adaptcentre.ie
https://www.adaptcentre.ie/about/team

Sheila Castilho graduated in Linguistics and Education from the UNIOESTE University in Brazil. She holds a joint Master in Natural Language Processing from the University of Wolverhampton, UK and the University of Algarve, Portugal. She completed her PhD dissertation at Dublin City University in 2016. Currently, she is a post-doctoral researcher at the ADAPT Centre. She is a programme committee member of a number of translation, machine translation and NLP conferences and has acted as a reviewer for high-profile journals. She has authored several journal articles and book chapters on translation technology, post-editing of machine translation, user evaluation of machine translation, and translators’ perception of machine translation. She is a co-editor of the book ‘Translation Quality Assessment: From Principles to Practice’, published in 2018 by Springer and a guest co-editor of the special issue of Machine Translation Journal on Human Factors in Neural Machine Translation published in 2019 by Springer. Her research interests include machine translation, post-editing, machine and human translation evaluation, usability, and translation technologies.

5 Acknowledgements

The ADAPT Centre for Digital Content Technology (www.adaptcentre.ie) at Dublin City University is funded under the Science Foundation Ireland Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.
References

Challenge Test Sets for MT Evaluation

Maja Popović, Sheila Castilho
ADAPT Centre @ DCU
name.surname@adaptcentre.ie

MT Summit 2019
Dublin City University
19 August 2019
Challenge Test Sets for MT Evaluation

▶ material:
https://sites.google.com/view/challenge-test-sets-tutorial/home
 ▶ these slides
 ▶ tutorial description
 ▶ full list of useful references

▶ questions:
 ▶ after a chapter/topic
 ▶ during the break
 ▶ after the tutorial
 ▶ Twitter #MTSummitCTS
Challenge Test Sets for MT Evaluation

We’ll be live tweeting it! 🌈

- #MTSummitCTS - our tutorial hashtag
- @amelija16mp and @_SheilaCastilho - the presenters
- @MTSummitXVII - the conference Twitter account
- #MTSummit2019 - the conference hashtag
Goals

- provide a broad overview of specified "challenge" test sets ("test suites") developed for different aspects of MT evaluation
- provide practical advice for creating own test suites

Note:
- it is not possible to cover all details from all papers
- a list of references is available in the tutorial description
Outline

1. Introduction

2. Overview of various challenge test sets

3. Practical aspects of designing challenge test sets
1. Introduction

- What are test sets?
- Standard Test Sets
- Challenge Test Sets - Test Suites
- Test Sets in MT tasks
- A bit of history
What are test sets?

two types of test sets

▶ standard test sets
 ▶ sub-sets of naturally occurring data
 ▶ usually of the same nature as the training set
 - if not: out-of-domain
 challenging in a way, but not a challenge test set

▶ challenge test sets (CTs) - also known as Test Suites
 ▶ specifically designed for particular phenomena
 ▶ not related to the training set
 ▶ not related to the domain
What are challenge test sets - test suites?

Generally:

- it has to concentrate on specific phenomena
- it should represent well these phenomena
- it should be of reasonable size
- it should enable a straightforward evaluation
- the phenomena are usually linguistically motivated

Therefore, our definition of Challenge Test Sets is:

A challenge test set is a representative set of isolated or in-context sentences, each hand or (semi)automatically designed to evaluate a system’s capacity to translate a specific linguistic phenomenon.
What are challenge test sets - test suites?

Fun Fact: "Suites" is pronounced /swiːt/ just like "sweets"!
What are challenge test set - test suites?

Not like "suits"!
Standard test sets

geometric shapes
Standard test sets

geometric shapes

Performance on triangles?
Evaluate on triangles

take triangles from the standard test set
Triangles from the standard test set

- rarely occurring
Triangles from the standard test set

- rarely occurring
- uneven distribution of two types (two upwards and five downwards)
Triangles from the standard test set

- rarely occurring
- uneven distribution of two types (two upwards and five downwards)
- what about leftwards and rightwards?
Standard test sets

Pretty much like
Challenge test sets: A test Suite for triangles
Challenge test sets: A test Suite for triangles

- balanced distribution
Challenge test sets: A test Suite for triangles

- balanced distribution
- covers all four types of triangles
Challenge test set - test suite

Pretty much like
Test Sets in MT tasks

A part of WMT 2019 standard test set

Shark injures 13-year-old on lobster dive in California
A shark attacked and injured a 13-year-old boy Saturday while he was diving for
lobster in California on the opening day of lobster season, officials said.
The attack occurred just before 7 a.m. near Beacon’s Beach in Encinitas.
Chad Hammel told KSWB-TV in San Diego he had been diving with friends for about half
an hour Saturday morning when he heard the boy screaming for help and then paddled
over with a group to help pull him out of the water.
Hammel said at first he thought it was just excitement of catching a lobster, but then
he "realized that he was yelling, 'I got bit!"
His whole clavicle was ripped open," Hammel said he noticed once he got to the boy.
"I yelled at everyone to get out of the water: 'There’s a shark in the water!'" Hammel
added.
The boy was airlifted to Rady Children’s Hospital in San Diego where he is listed in
critical condition.
The species of shark responsible for the attack was unknown.
Lifeguard Capt. Larry Giles said at a media briefing that a shark had been spotted in the
area a few weeks earlier, but it was determined not to be a dangerous species of shark.
Giles added the victim sustained traumatic injuries to his upper torso area.
Officials shut down beach access from Ponto Beach in Casablad to Swami’s in Ecinitas
for 48 hours for investigation and safety purposes.
Giles noted that there are more than 135 shark species in the area, but most are not
considered dangerous.
Shark injures 13-year-old on lobster dive in California

A shark attacked and injured a 13-year-old boy Saturday while he was diving for lobster in California on the opening day of lobster season, officials said. The attack occurred just before 7 a.m. near Beacon's Beach in Encinitas. Chad Hammel told KSWB-TV in San Diego he had been diving with friends for about half an hour Saturday morning when he heard the boy screaming for help and then paddled over with a group to help pull him out of the water. Hammel said at first he thought it was just excitement of catching a lobster, but then he "realized that he was yelling, 'I got bit! His whole clavicle was ripped open," Hammel said he noticed once he got to the boy. "I yelled at everyone to get out of the water: 'There's a shark in the water!'" Hammel added.

The boy was airlifted to Rady Children's Hospital in San Diego where he is listed in critical condition. The species of shark responsible for the attack was unknown. Lifeguard Capt. Larry Giles said at a media briefing that a shark had been spotted in the area a few weeks earlier, but it was determined not to be a dangerous species of shark. Giles added the victim sustained traumatic injuries to his upper torso area. Officials shut down beach access from Ponto Beach in Casablad to Swami's in Ecinitas for 48 hours for investigation and safety purposes. Giles noted that there are more than 135 shark species in the area, but most are not considered dangerous.
A challenge test set for "but" and "and"

An additional test – and it would not be difficult to prepare – would make the results stronger.

And now something completely different!
And what is she doing here?
Who is she and what is she doing here?
Andy got a package and Jack got a letter.
Ann likes to dance, and Bill likes to dance, too.
Because I had it and now I do not have it.
I’m a great actor, and you’re a cheap producer.
Cathy thought she was going to win, and you pushed her.
Chris planned this trick and you carried it through.
Come to us not as a guest, but as a brother.
Convicted not of arson, but of some minor transgression.
Crime is not the reason but the consequence.
Do not hate the sinner, but the sin.
Do not immediately refuse the man, but show what his weak points are.
Don’t apologize to me, but to her.
Don’t talk, but do it now.
Dreaming won’t get you to your goal, but discipline will.
Enlightenment is not found in falling but in rising.
Family rituals aren’t necessarily about what you do, but more about doing things together.
The main differences

standard test sets

+ reflect the frequency distribution of different phenomena found in naturally occurring data
 - particular phenomena might be under-represented, and others might be over-represented

challenge test sets

+ have a good coverage of phenomena of interest
 - do not reflect the statistical distribution of phenomena encountered in real corpora
History

- early 1990s:

- early 2000s:
 suppressed by emergence of statistical systems

 probable reason:
 - the performance of statistical systems depends very much on the particular training data and parameter settings
 - conclusions about the grammatical errors they make are difficult to draw
History

- since 2015: revived in order to obtain more fine-grained qualitative observations about MT systems
- since 2017: expanded with the emergence of neural systems
- since 2018: "Additional Test Suites in News Translation Task" at WMT\(^1,\(^2\)

\(^1\)http://www.statmt.org/wmt18/translation-task.html
\(^2\)http://www.statmt.org/wmt19/translation-task.html
History

- WMT "Additional Test Suites in News Translation Task"
2. Overview of Various Challenge Test Sets (CTSs)
Overview of various CTSs

- first CTSs
- implicit CTSs
- designed CTSs
- probing NMT representations
First CTSs – NLP in general

TSNLP (Test Suites for Natural Language Processing) Project [Lehmann et al., 1996]³

▶ English, French and German
▶ restricted vocabulary
▶ as short as possible entries
▶ each entry focuses only on a single phenomenon
▶ about 10 types of core phenomena + their sub-classes
▶ correct (well-formed) and contrastive (ill-formed) entries
 ▶ contrastive = introducing errors
 deletions, substitutions, omissions and reorderings
▶ evaluation: the system output is either acceptable or unacceptable

³http://www.delph-in.net/tsnlp/
MT test suites for probing RBMT systems
[King and Falkedal, 1990]

- Describes a theory for translation strategy using test suites
- Test suite based on actual texts
- Outputs classified by the evaluator as acceptable or unacceptable
- Use two parallel test suites, one to be used by the evaluator to give feedback to the manufacturer (translation problems), and one to serve as a control corpus (language coverage).
MT test suites for probing RBMT systems [Way, 1991]

- suggestions about the construction of test suites
- test suite based on actual texts
- test suite constructed with information concerning the relative frequency of phenomena obtained from a corpus
- the combinations of concepts need to be limited, to prevent sentences becoming intolerably complicated
- distinction of 4 test suite types:
 - an initial development suite
 - an analysis suite
 - a synthesis suite
 - a transfer suite
Implicit CTSs

interested in system’s performance on X?

- take all Xs from your standard test set
- calculate evaluation scores on this sub-set

$X=\{\text{linguistic phenomenon, geometric shape, candy,}...\}$
Implicit CTSs

a sub-set of a standard test set

▶ created as a by-product of usual evaluation process
▶ also used for evaluating statistical systems
▶ do not necessarily represent well the distribution of the phenomena of interest
Implicit CTSs

phenomena

- German compounds [Popović et al., 2006, Escartín, 2012]
- noun-adjective and verb reordering [Popović and Ney, 2006]
- gender [Vanmassenhove et al., 2018]
- certainly some more
Implicit CTSs

standard test set

Performance on triangles and quadrilaterals?
Implicit CTSs

- implicit test set for triangles

- not very good
Implicit CTSs

implicit test set for quadrilaterals

- much better

! one never knows what is "hidden" in the standard test set
"and" and "but" from the standard WMT 2019 test set
A shark attacked and injured a 13-year-old boy Saturday while he was diving for lobster in California on the opening day of lobster season, officials said. Chad Hammel told KSWB-TV in San Diego he had been diving with friends for about half an hour Saturday morning when he heard the boy screaming for help and then paddled over with a group to help pull him out of the water. Hammel said at first he thought it was just excitement of catching a lobster, but then he "realized that he was yelling, 'I got bit!"
Lifeguard Capt. Larry Giles said at a media briefing that a shark had been spotted in the area a few weeks earlier, but it was determined not to be a dangerous species of shark. Officials shut down beach access from Ponto Beach in Casablad to Swami’s in Ecinitas for 48 hours for investigation and safety purposes. Giles noted that there are more than 135 shark species in the area, but most are not considered dangerous.
Interested in system’s performance on X?

- design a controlled test set specifically for X
- specify the evaluation procedure for X
- evaluate on this test set

$X = \{\text{linguistic phenomenon, geometric shape, candy, \ldots} \}$
a number of CTSs has been developed in the last years (from 2016 till mid-2019)

- different amounts and types of phenomena (from large taxonomies to a single phenomenon)
- various language pairs and translation directions (almost always involving English)
- different strategies for generation/evaluation (manual, semi-automatic, automatic)
Designed CTSs

taxonomies

► large taxonomies covering a number of distinct phenomena
► one broad class of phenomena covering several sub-classes
 morphology, grammatical constraints
► concentrating on a particular phenomenon
 ambiguity of pronouns, nouns, conjunctions
Designed CTSSs

phenomena

- morphology
- grammar
- ambiguity
- discourse
- gender bias
-
Designed CTSs

generating entries

- manually
- automatically
- something in between
- use and adapt some existing corpora
Designed CTSs

evaluation

- manual
- automatic
- something in between
Designed CTSSs

Large taxonomy CTSSs

- English-to-French [Isabelle et al., 2017]
- German↔English [Burchardt et al., 2017]
- created to compare NMT with PBMT (and RBMT)
- top-down decision about the phenomena:

 based on linguistic knowledge about the differences between the source and target languages
Designed CTSs

Large taxonomy CTSs

English-to-French [Isabelle et al., 2017]

▶ one of the first modern CTSs
▶ created to compare NMT with PBMT
▶ 108 manually crafted entries
▶ manual evaluation
▶ publicly available

https://www.aclweb.org/anthology/attachments/D17-1263Attachment.zip
Designed CTSs

Large taxonomy CTSs

English-to-French

entries

- English source sentence
- French reference translation
- three French MT outputs
- human annotations ("correct" or "incorrect")
Designed CTSs

Large taxonomy CTSs

English-to-French

phenomena

► morpho-syntactic divergences
 subject-verb agreement, subjunctive

► lexico-syntactic divergences
 argument switching, noun compounds, idioms,...

► syntactic divergences
 yes-no question syntax, clitic pronouns, stranded prepositions, ...
example of an entry for subject-verb agreement

| Src | The repeated **calls** from his mother
| | **should have** alerted us. |
| Ref | Les **appels** répétés de sa mère
| | **auraient** dû nous alerter. |
| | correct? |
| PBMT | Les appels répétés de sa mère
| | aurait dû nous a alertés. |
| NMT | Les appels répétés de sa mère
| | **devraient** nous avoir alertés. |
| Google | Les appels répétés de sa mère
	auraient dû nous alerter.	
	yes	
		no
		yes
main findings

► NMT generally better than PBMT
► idiomatic expressions are the main shortcoming of NMT

potentials and limitations

- manually crafted, not easily scalable
+ available manual annotations can help development of automatic methods
Designed CTSs

Large taxonomy CTSs

German↔English [Burchardt et al., 2017]

- manually crafted test set
- aims to investigate general MT performance against a wide range of linguistic phenomena
- about 5,000 entries
- semi-automatic evaluation
- not publicly available
Designed CTSs

Large taxonomy CTSs

German ↔ English

entries

- source sentence
- broad phenomenon category
- specific phenomenon
- MT output
- post-edited MT output

compiled from various corpora

- parallel corpora
- grammatical resources (TSNLP Grammar Test Suite)
- online lists of typical translation errors
Designed CTSs
Large taxonomy CTSs
German ↔ English

phenomena

- 14 broader categories
- 106 fine-grained phenomena
- each phenomenon represented by at least 20 entries
Designed CTSs
Large taxonomy CTSs
German ↔ English

broader categories

- ambiguity
- composition
- function words
- long distance dependencies & interrogative
- multi-word expressions
- named entities & terminoology
- subordination
- verb tense/aspect/mood
- verb valency
two examples: MWE and non-verbal agreement

<table>
<thead>
<tr>
<th>Category</th>
<th>MWE</th>
<th>Non-verbal Agreement</th>
<th>Coreference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenomenon</td>
<td>Idiom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Lena \textit{machte sich früh vom Acker.}</td>
<td>Lisa hat Lasagne gemacht, \textit{sie} ist schon im Ofen.</td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>Lena [left the field early].</td>
<td>Lisa has made lasagne, [she] is already in the oven.</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>Lena [left early].</td>
<td>Lisa has made lasagne, [it] is already in the oven.</td>
<td></td>
</tr>
</tbody>
</table>
semi-automatic evaluation

- check the match with the reference translation (post-edited MT output)
- if no match, evaluate manually
extensions [Macketanz et al., 2018, Avramidis et al., 2019]

- increased focus on verb tenses, aspects and mood
- publicly available example (237 entries)
 https://github.com/DFKI-NLP/TQ_AutoTest/example
- semi-automatic evaluation based on a set of hand-crafted regular expressions
 - match correct translations ⇒ correct
 - match incorrect translations ⇒ incorrect
 - no match ⇒ manual inspection
- participated in the WMT-18 and WMT-19 test suite tasks
Designed CTSs

Morphology

Morpheval test suites
[Burlot and Yvon, 2017, Burlot et al., 2018]

- English→{Latvian, Czech, German, Finnish}, Turkish→English
- created for assessing morphological competence of MT systems
- 500 entries for each of the three morphological features
- participated in the WMT-18 test suite task
- fully automatic generation and evaluation (no manual checking)
- publicly available
 - https://github.com/franckbrl/morpheval
 - https://github.com/franckbrl/morpheval_v2
morpheval CTSs

morphological features

▶ contrast:
morphological variants of the same lemma
(tense, person, case, gender, polarity, ...)

▶ agreement consistency:
different POS (pronouns or nouns+adjectives) in the same context

▶ lexical consistency:
noun, verb and adjective lexical variations of the same inflection in the same context
example of morphological contrast

- **polarity**
 - I am *hungry*.
 - I am *not hungry*.

- **tense**
 - The thing *horrifies* me.
 - The thing *horrified* me.

 - We *did* it.
 - We *will do* it.

The translation should reflect the form in the source.
example of agreement consistency

I see him. PRON
I see a crazy researcher. ADJ N
I see a good friend. ADJ N
I see a happy linguist. ADJ N

All pronouns, adjectives and nouns should be translated into the same case in the target language.
example of lexical consistency

I agree with the president.
I agree with the director.
I agree with the minister.
I agree with the driver.
I agree with the painter.

All nouns should be translated into the same case in the target language.
Designed CTSs

Morphology

Morpheval CTSs

entries

- short source sentences from WMT News data
- reference (base) translation
- translation variant(s)
Designed CTSs

Morphology

Morpheval CTSs

generation

- collect a large number of short source and target language sentences (length < 15) containing a source feature of interest
- generate translation variant(s)
- compute an average language model (LM) score for each entry (base, variants)
- remove the 33% entries with the lowest LM scores
- randomly select 500 entries for the final test set
evaluated contrast

- the differences between the base and the variant translations encode the examined contrast
 ⇒ correct entry
- the base and the variant translations are identical or their differences are irrelevant to the examined contrast
 ⇒ incorrect entry

- resulting score: accuracy averaged over all entries
evaluation – consistency

- all variants have the same morphological features
 = highest possible consistency of an entry
 ⇒ entropy = 0

- each variant contains a different morphological feature
 = lowest possible consistency of an entry
 ⇒ entropy = 1

- resulting score: average entropy over all entries
main findings

▶ generally, systems with high global quality show a good morphological competence
▶ rule-based systems have much higher morphological competence than overall quality
▶ consistency features not correlated with human judgments of overall quality
potentials and limitations

- generation and evaluation are fully automatic
 - fast, ability to generate large test sets
 - relies on automatic morphological analysers in target language and heuristics
 → prone to errors

- resulting scores are based on average accuracy/entropy
 - it is possible to do more refined analysis (e.g. frequent vs. rare words, etc.)
Grammar

- English-to-German
 how grammatical is NMT output [Sennrich, 2017]
- English-to-Czech
 grammatical constraints [Cinková and Bojar, 2018]
Designed CTSs
Grammar

English-to-German NMT [Sennrich, 2017]

- assessing five aspects of German grammar
- created for comparing BPE- and character-based NMT
- 97,000 entries
- automatic generation and evaluation
- publicly available

https://github.com/rsennrich/lingeval97
Designed CTSs
Grammar
English-to-German NMT

entries

- compiled from WMT News data
- source sentence
- reference (correct) translation
- contrastive (incorrect) translation
Designed CTSs
Grammar
English-to-German NMT

generation

- find source and target pairs with phenomena of interest
- for each, generate a contrastive target sentence with one artificially generated error
Designed CTSs
Grammar
English-to-German NMT

phenomena

- noun-phrase agreement
- subject-verb agreement
- separable verb particle
- polarity
- transliteration
examples of each grammatical phenomenon

<table>
<thead>
<tr>
<th></th>
<th>English</th>
<th>German correct</th>
<th>German contrastive</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP agr.</td>
<td>of the American congress</td>
<td>des amerikanischen Kongresses</td>
<td>der amerikanischen Kongresses</td>
</tr>
<tr>
<td>SV agr.</td>
<td>that the plan will be approved</td>
<td>dass der Plan verabschiedet wird</td>
<td>dass der Plan verabschiedet werden</td>
</tr>
<tr>
<td>V particle</td>
<td>he is resting</td>
<td>er ruht sich aus</td>
<td>er ruht sich an</td>
</tr>
<tr>
<td>polarity</td>
<td>the timing is uncertain</td>
<td>das Timing ist unsicher</td>
<td>das Timing ist sicher</td>
</tr>
<tr>
<td>translit.</td>
<td>Mr. Ensign's office</td>
<td>Senator Ensigns Büro</td>
<td>Senator Enisgns Büro</td>
</tr>
</tbody>
</table>
Designed CTSs
Grammar
English-to-German NMT

contrastive automatic evaluation
based on the ability of NMT systems to assign scores to
arbitrary sentence pairs

▶ the system assigns higher probability to the correct
reference translation than to the contrastive translation
⇒ correct entry

▶ the other way round:
⇒ incorrect entry

▶ resulting score: accuracy
Designed CTSs

Grammar

English-to-German NMT

main findings

- character-based decoders are better for processing unknown names
- BPE is better for morpho-syntactic agreement over long distances
- the most challenging error type is the omission of negation markers
Designed CTSs
Grammar

English-Czech constrasts [Cinková and Bojar, 2018]

- designed for comparing English-to-Czech MT systems
- participated in the WMT-18 test suite task
- 3235 entries
- automatic generation and evaluation
- available via LINDAT-CLARIN repository
 http://hdl.handle.net/11234/1-2856
Designed CTSs

Grammar

English-Czech contrasts

entries

- automatically selected from Prague Czech-English Dependency Treebank 2.0 (PCEDT)
- English source trees
- Czech reference trees
Designed CTSs
Grammar
English-Czech contrasts

phenomena

- verb related
- two types of English clauses which can have many variations in Czech:
 - English gerundial clause (and other -ing forms)
 - English infinitive clause
examples: gerundial clause

en He was surprised by the reaction, calling it frenetic.
cs He was surprised by the reaction, and he called it frenetic.
en Consider adopting your spouse’s name.
cs Consider the adopting of your spouse’s name.

example: infinitive clause

en she agreed to strike him
cs she agreed with the striking of him
cs she agreed with it that she would strike him
Designed CTSs

Grammar

English-Czech contrasts

automatic evaluation
find the Czech translation of the English part related to the phenomenon
(using automatic word alignments between the English surface tree and Czech surface and deep trees)

- Czech morpho-syntactic properties match the reference ⇒ correct entry
- Czech morpho-syntactic properties do not match the reference ⇒ incorrect entry
- Czech expression not found (e.g. due to alignment problems) ⇒ unknown entry
Designed CTSs
Grammar
English-Czech contrasts

potentials and limitations

▶ no manual annotations
▶ relying on reference translations, which could lead to overly pessimistic results ("bad" entries are not necessarily unacceptable)
Designed CTGs

Ambiguity

- pronouns (discourse-related)
 [Guillou and Hardmeier, 2016, Guillou et al., 2018, Müller et al., 2018]

- nouns (lexical ambiguity)
 [Rios Gonzales et al., 2017, Rios Gonzales et al., 2018, Raganato et al., 2019]

- conjunctions (related to the sentence structure)
 [Popović and Castilho, 2019, Popović, 2019]
Designed CTSs

Ambiguous pronouns

PROTEST test suite [Guillou and Hardmeier, 2016]

- English-to-French
- 250 manually crafted entries
- semi-automatic evaluation
- publicly available
 https://bitbucket.org/lianeg/protest/src/master/
Designed CTSs

Ambiguous pronouns

PROTEST

entries

- English transcriptions of TED Talks
- their French reference translations
- context for each sentence is available on the document level
types of pronouns

- anaphoric (it/they)
 I have a bicycle. \textit{It} is red.

- event (it)
 X invaded Y. \textit{It} resulted in war.

- pleonastic
 \textit{It} is raining.

- addressee reference (you/your(s))
 - individual person, formal or informal
 - group of people
 - people in general
evaluation

- automatic:
 if the target pronoun is in the reference translation
 ⇒ correct

- if not
 ⇒ manual evaluation
Designed CTSs
Ambiguous pronouns
PROTEST

extensions

- English-to-German
- TED talks and News
- 200 entries
- focus on "it" and "they"
- participated in the WMT-18 test suite task
- main finding: inter-sentential context is the most challenging
Designed CTSs
Ambiguous pronouns

inter-sentential [Müller et al., 2018]

- English-to-German NMT
- pronoun "it"
- 12,000 entries
- automatic generation and evaluation
- intended for assessment of context-aware NMT systems
- publicly available
 https://github.com/ZurichNLP/ContraPro
Designed CTSs

Ambiguous pronouns

inter-sentential

entries

▶ automatically extracted from OpenSubtitles
▶ English source text
▶ German reference (correct) translation
▶ German contrastive (incorrect) translation
 ▶ contains incorrect pronoun
 ▶ grammatically correct in isolation (without the context)
Designed CTSs

Ambiguous pronouns

inter-sentential

generation

- three possible translations of English "it" into German: "er" ("he"), "sie" ("she") or "es" ("it")
- based on POS tags and automatic word alignments
- contrastive translations:
 change the pronoun in the German reference
Designed CTSs

Ambiguous pronouns
inter-sentential

contrastive automatic evaluation
same as [Sennrich, 2017]

- the system assigns higher probability to the correct reference translation than to the contrastive translation ⇒ correct entry
- the other way round:
 ⇒ incorrect entry
- resulting score: accuracy
main findings

- BLEU scores do not award context-aware models
- these models have much better accuracy on the designed pronoun test suite
- the best model yields +16% accuracy
Designed CTSs

Lexical ambiguity (nouns)

- German-to-\{English,French\} NMT
 [Rios Gonzales et al., 2017]
- German-to-English, model-agnostic
 [Rios Gonzales et al., 2018]
- English↔\{German,Finnish,Russian,Lithuanian\},
 English-to-Czech
 both NMT and model-agnostic
 [Raganato et al., 2019]
Designed CTSs

Lexical ambiguity (nouns)

German-to-\{English,French\} NMT
[Rios Gonzales et al., 2017]

- 7200 entries for German-to-English
- 6700 entries for German-to-French
- created to assess word sense embeddings for NMT
- semi-automatic generation
- automatic contrastive evaluation
 [Sennrich, 2017, Müller et al., 2018]
- publicly available
 https://github.com/a-rios/ContraWSD
Designed CTSs

Lexical ambiguity

German-to-\{English,French\} NMT

entries

- extracted from WMT News, OpenSubtitles, GlobalVoices, EU Bookshop, MultiUN parallel corpora
- source segments
- reference translations
- one or more contrastive examples
 - German-to-English: 3.5 per entry
 - German-to-French: 2.2 per entry
Designed CTSs
Lexical ambiguity (nouns)
German-to-{English,French} NMT
generation

- automatically extract ambiguous word pairs from PBMT phrase tables
- clean the lists manually
- use the lists to automatically extract sentence pairs from parallel corpora
- automatically generate contrastive examples
example of German-to-English entry

source	Ich stellte mich in die Schlangen für Ausländer.
reference	I got in the line for foreigners.
contrastive1	I got in the snake for foreigners.
contrastive2	I got in the serpent for foreigners.
main findings

- rarely seen words are challenging (accuracy less than 50%)
- for many words, a larger context is necessary for disambiguation
Designed CTSs
Lexical ambiguity
German-to-English

modifications [Rios Gonzales et al., 2018]

- evaluation process modified to be model-agnostic
- 3249 entries
- participated in the WMT 18 test suite task
Lexical ambiguity
German-to-English evaluation

- only instances of the correct translations are found ⇒ correct
- only instances of the incorrect translations are found ⇒ incorrect
- both correct and incorrect translations are found ⇒ manual inspection
- none of the two translations is found ⇒ manual inspection

Manual inspection required for about 5% of entries.
Designed CTSSs
Lexical ambiguity
German-to-English

main findings
16 German-to-English WMT-18 systems
+ top ranked WMT-16 and WMT-17 systems
 ▶ accuracy varies from 43% to 94%
 ▶ unsupervised systems are at a clear disadvantage
 ▶ translation models have improved since 2016 and 2017
MuCoW test suite [Raganato et al., 2019]

- 16 language pairs
- about 250,000 entries
- language-independent automatic generation
- two types of automatic evaluation
- participated in the WMT-19 test suite task
- publicly available
 https://github.com/Helsinki-NLP/MuCoW
Designed CTSs

Lexical ambiguity

MuCoW test suite

two sets for two evaluation methods

- "scoring test suite"
 - 11 language pairs, 240,000 entries
 - contrastive automatic evaluation
 - suitable only for NMT

- "translation test suite"
 - 9 language pairs, 15,600 entries
 - automatic check for correct and incorrect words based on word lists
 - only automatic check
 - no manual check for unclear cases
 - model-agnostic
Designed CTSs

Lexical ambiguity

MuCoW test suite

generation

- identify list of words and their translations from OPUS parallel corpora using automatic word alignments
- use BabelNet (a wide-coverage multilingual encyclopedic dictionary) to cluster word senses
- refine clusters with sense embeddings
main findings

- the systems yield high precision for in-domain translations
- especially when translating from English into a morphologically rich language
- out-of-domain disambiguation is still challenging
Designed CTSs

Ambiguous conjunctions

- source languages: English, French, Portuguese
- not bounded to any specific target language can be used for any target language with the given conjunction ambiguity
- participated in WMT 2019 test suite task {English,French}-to-German
- semi-automatic creation
- semi-automatic evaluation
- publicly available
 https://github.com/m-popovic/evaluating-ambiguous-conjunctions-MT
Designed CTSs

Ambiguous conjunctions

entries

➤ short source English, French and Portuguese sentences (up to 20 words)

➤ expected target conjunction in German, Spanish, Serbian and Croatian (so far tested on these target languages)

➤ no reference translations available
Designed CTSs

Ambiguous conjunctions

phenomenon

- English conjunctions "but" and "and" (and their French and Portuguese equivalents) can be translated in two different variants in certain target languages
- depends mainly on the sentence structure
- about 1000 entries for "but"
- about 250 entries for "and"
Designed CTSs

Ambiguous conjunctions

ambiguity of "but"

in German, Spanish, Serbian, Croatian:

▷ the first (more frequent) variant can be used after either a positive or a negative clause

▷ the second variant is used after a negative clause when expressing a contradiction

#1 (aber, pero, ali)
We wanted to go to the beach, but we went back to the hotel.

#2 (sondern, sino, nego/već)
We didn’t want to go to the hotel, but to the beach.
Ambiguous conjunctions

ambiguity of "and"
in Serbian and Croatian:

- the first (more frequent) variant is used to connect non-contrasting actions or ideas
- the second variant is used to indicate that the two connected facts are different

#1 (i)

The walls **and** the door are white.

#2 (a)

The walls are white **and** the door is black.
Ambiguous conjunctions

automatic evaluation

- only the correct conjunction is found
 ⇒ correct
- only the opposite conjunction is found
 ⇒ incorrect
- both conjunctions are found
 ⇒ manual inspection
- none of the two conjunctions are found
 ⇒ manual inspection

manual inspection (for about 2% of entries)
the structure of a sentence is correct
⇒ the sentence is correct
main findings

- "and" is more difficult to disambiguate than "but"
- the first (more frequent) variants are generally not problematic
- most frequent error for the second variant = substitution by the first variant
- related to the amount of the training data
Designed CTSs

Discourse

- English-to-French [Bawden et al., 2018]
- English-to-Croatian [Šoštarić et al., 2018]
- English-to-Czech [Bojar et al., 2019]
English-to-French NMT [Bawden et al., 2018]

- two manually crafted test sets
- coreference and cohesion/coherence
- automatic contrastive evaluation
- aim to assess the integration of linguistic context in NMT
- publicly available https://diamt.limsi.fr/eval.html
Designed CTSs
Discourse
English-to-French NMT

entries

▶ manually compiled from OpenSubtitles
▶ contains source text with reference and contrastive translations
▶ each entry necessarily needs the previous context (in the source and/or the target language) for disambiguation
▶ 200 entries in each of the two test sets
coreference test set

- aims at evaluating integration of the target side context
- each entry is defined by
 - a source sentence with an anaphoric pronoun "it" or "they"
 - its preceding context containing the pronoun’s nominal antecedent
- target pronouns are evenly distributed across number and gender
coherence/cohesion test set

- each entry is defined by
 - a source sentence with one ambiguous word
 - its previous context
- the context might be found on the source side, the target side, or both
main findings

- separate encoders for current and previous sentence are not the best option
- the best strategy:
 - use the previous source sentence as an auxiliary input
 - decode both the current and previous sentence
Designed CTSs
Discourse

English-to-Croatian [Šoštarić et al., 2018]

- four phenomena focused on unaligned pronouns and determiners
- bottom-up decision about the phenomena:
 1. analysis of both human translations and MT outputs
 2. four problematic divergent patterns/phenomena found
 3. test suites constructed for these phenomena
- automatic extraction with manual checking
- manual evaluation (error analysis)
- available via LINDAT-CLARIN repository
 http://hdl.handle.net/11234/1-2855
Designed CTSs
Discourse
English-to-Croatian

entries

▶ compiled from DGT, SETimes news and TED talks
▶ 1899 sentence pairs in total
▶ each marked with the phenomenon tag
Designed CTSs
Discourse
English-to-Croatian

Phenomena

- Croatian relative pronoun not present in English
 - en a resealable bag
 - hr vrećica koja se može ponovno zatvoriti
 - en-gloss bag which REFL can again to-seal

- Croatian alternatives for English definite articles
 (demonstratives or possessives)
 - en to address the problem, ...
 - hr kako bi se nosio s ovim problemom
 - en-gloss in-order-to would REFL deal with this problem
phenomena

- **English "it" as subject of a passive or expletive**

 - **en**
 - it is necessary to make them

 - **hr**
 - potrebno ih je stvoriti

 - **en-gloss**
 - necessary them is to-make

- **English possessive pronouns without Croatian equivalent**

 - **en**
 - Shortly after their arrival, the royal couple...

 - **hr**
 - Nedugo nakon dolaska, kraljevski par...

 - **en-gloss**
 - Shortly after arrival, royal couple...
main findings

comparing three MT systems trained on publicly available data (one PBMT and two NMT)

- all systems perform unsatisfactory on the examined phenomena
- NMT system without BPE performs better than the BPE-based one
Designed CTSs

Discourse

English-to-Czech [Bojar et al., 2019]

- aims at evaluating document-level language phenomena
- 101 documents with cross-sentence discourse relations
- bottom-up decision about phenomena (learning from actual errors in MT outputs)
- manual creation and evaluation
- participated in WMT-19 test suite task
- not yet publicly available
Designed CTSs

Discourse

English-to-Czech

coherence phenomena

- topic focus and word order
- position of discourse connectives
- alternative lexicalisations of (multi-word) discourse connectives
main findings

- five systems from WMT-19 evaluated
- no systematic differences observed
Discourse

English-to-Russian NMT [Voita et al., 2019]

- focuses on correct context-agnostic translations which are incorrect in the given context
- bottom-up decision about the phenomena:
 1. analysis of the natural test sets
 2. three context-related problematic patterns/phenomena were found
 3. test suites for these phenomena were created
- semi-automatic creation
- automatic contrastive evaluation
- publicly available:
Designed CTSs

Discourse

English-to-Russian NMT

Phenomena

- politeness
 (formal or informal "you")
- ellipsis
 (noun phrase inflection and verb sense)
- lexical cohesion
 (transcription of named entities)
Designed CTSs
Discourse
English-to-Russian NMT

entries

- compiled from OpenSubtitles
- 300 entries for politeness of "you"
- 500 entries for noun phrase inflections with ellipsis
- 500 entries for verb sense with ellipsis
- 2000 entries for lexical cohesion
- each entry contains one or more contrastive examples

contrastive examples:
correct at the isolated sentence level,
but not in the given inter-sentential context
We haven’t really spoken much since your return. Tell me, what’s on your mind these days?

▶ both possessive pronouns "your" as well as the verb "tell" should be translated into the same politeness variant (either second singular or second plural)

▶ contrastive examples: mixtures of second singular and second plural
example of ellipsis and noun phrase inflection

You call her your friend but have you been to her **home**? Her **work**?

- both "her home" and "her work" have to be translated into the same case determined by the first sentence
- contrastive examples: "Her work" in isolation can be translated into any case
example of ellipsis and verb sense

Veronica, thank you, but you saw what happened. We all did.

- second sentence requires past tense of the verb "see" in the Russian translation
- contrastive examples:
 second sentence with other verbs in the past tense
example of lexical cohesion

Go check, **Fran**, get up.
Fran, it is coming to the living room!

- the Russian transcription of "Fran" should be same in both sentences
- contrastive examples:
 mixtures of correct transcriptions
main findings

▶ several context-aware models developed and compared to a context-agnostic baseline
▶ context-aware models achieve better accuracies on the CTSs
▶ indistinguishable BLEU scores
Gender bias

evaluating gender of nouns [Stanovsky et al., 2019]

- does MT rely on gender stereotypes or on the given (intra-sentential) context?
- 3888 English sentences designed to test gender bias in coreference resolution
 - Winogender
 https://github.com/rudinger/winogender-schemas
 - WinoBias
 https://github.com/uclanlp/corefBias/tree/master/WinoBias/wino datasets
- no reference translations in any language
- automatic evaluation
- publicly available
 https://github.com/gabrielStanovsky/mt_gender
Gender bias

examples of two entries

The doctor asked the nurse to help her in the procedure.
The doctor asked the nurse to help him in the procedure.

The lawyer yelled at the hairdresser because she did a bad job.
The lawyer yelled at the hairdresser because he did a bad job.

- stereotypical and non-stereotypical variants
- the information about the gender of the noun is given by the pronoun (her, him) in the very same sentence
Designed CTSs

Gender bias

Automatic evaluation

- translate the test set into a target language with grammatical gender
- automatically align source and MT output using the fast_align tool
- identify gender in the target language using off-the-shelf morphological analysers or simple heuristics
- output: accuracy
Gender bias

Main findings

- Tested on eight target languages with grammatical gender (es, fr, it, ru, uk, ar, he, de)
- All 6 tested MT models are significantly prone to rely more on gender stereotypes than on the given context

Limitations stated by the authors

- Artificially created data set
- Medium size (can lead to overfitting if used for training)
- Future work:
 - More entries, looking for natural samples
Designed CTSs

Summary

- a number of different CTSs has been developed
- covering a number of distinct or related phenomena
- covering a number of (European) language pairs
- designed/used for different applications
Designed CTSs

Summary Applications

- comparing distinct MT systems (e.g. WMT test suite task, PBMT vs. NMT)
- testing a particular competence of MT systems in general (e.g. gender bias, ambiguous conjunctions)
- assessing targeted modifications of an NMT system (e.g. context-aware NMT models)
Designed CTSs

Summary

Two types of modern CTSs

- Model-agnostic CTSs can be used for any MT architecture (even for human translations)
- Contrastive CTSs specifically designed for NMT
 - First CTSs were specifically designed for RBMT
Testing NMT systems

- testing NMT outputs: model-agnostic or contrastive CTSs
- testing NMT components: other type of evaluation, but also requires appropriate test sets
Testing NMT components

looking into a neural network

- neural networks have a complex architecture
- how a particular part of neural network captures a particular (linguistic) phenomenon?
Testing NMT components

How to test a network component on a phenomenon?

preparation

- define phenomenon of interest
- define an appropriate classification task for the given phenomenon
- define a classifier for this task
 (a simple feed-forward neural network is often used, but any type of classifier is possible)
Testing NMT components

How to test a network component on a phenomenon?

classification data-set

► prepare a labelled data set appropriate for the classification task
► separate in into training and validation set
Testing NMT components

How to test a network component on a phenomenon?

training the classifier

- give the training part of the classification data set to the NMT system as input
- extract the output of the NMT component of interest
- train the classifier on this output
Testing NMT components

How to test a network component on a phenomenon?

(finally) testing

evaluating the output of the classifier

► the higher accuracy \(\Rightarrow\) the better capability of the component to capture the phenomenon
Testing NMT components

A very simplified neural network

input layer = source
output layer = translation
Testing NMT components

Testing the red layer

classifier input = output of the red layer
Testing NMT components

Testing the second node in the red layer

Classifier input = output of the second node in the red layer
Testing NMT components

Data-sets for the classifier

- the classification task should represent well the phenomenon of interest
- the classification data-set should be appropriate for this task
- it has to be big enough to be split into training and validation part
Testing NMT components

Data-sets for the classifier

relation to CTSs

- classification data-set is not necessarily a test suite
 - so far, no results on test suites reported in the literature
 - only standard test sets with morphological, syntactic or semantic tags have been used
- test suites can be used if sufficiently large
 - the larger the better
 - 100 or 500 entries will not work well
Testing NMT components

Tested phenomena

morphology [Belinkov et al., 2017a, Durrani et al., 2019]

- task: full morphological POS tagging
 (VERB-Sing-2nd-Past, NOUN-Plur-Genitive, ...)
- reasoning:
 - the tested word representations are able
to distinguish full morphological POS tags
 ⇒ they are well capable of capturing the word morphology
Testing NMT components

Tested phenomena

syntax [Durrani et al., 2019]
 - task: syntactic tagging
 (VP, NP, ...)

semantics [Belinkov et al., 2017b, Durrani et al., 2019]
 - task: semantic tagging
 (roles, events, quantifiers, ...)

The same reasoning as for the morphology.
Main findings

- lower layers of the encoder better capture word structure
- decoder learns very little about word structure
- higher encoder layers better capture semantics
- character-based representations are better than BPE
3. Practical Aspects
Practical aspects

Thinking about creating your own CTS?
Thinking about creating your own CTS?

we cannot
tell you what to do exactly

we can
explain what you should think about
Practical aspects

Thinking about creating a new CTS?

▶ go ahead, it is not very difficult!
▶ not very easy, either:
 many aspects to think about in advance
Practical aspects

Thinking about participating in the WMT test suite task?

on top of general aspects:

▶ check translation directions for the given year
▶ ensure a fast evaluation process
 ‣ 5–20 MT outputs per translation direction

message from the organisers at WMT-19:

▶ human parity
 ⇒ include human translations in the evaluation
our addition: include details about these human translations
Practical aspects

Things to think about

- What to evaluate at all?
- How many phenomena?
- Structure of entries?
- How to create entries?
- Model agnostic or designed for specific architecture?
- Evaluation procedure?
Practical aspects

What to evaluate?

the decision about which phenomena are of interest is far from trivial

▶ what is important for the system development?
▶ what is important for the application of the system?
▶ what is (potentially) problematic for the given translation direction?
Practical aspects

What to evaluate?

two main strategies

- top-down:
 - start from theoretically problematic linguistic concepts
 - start from concepts important for the task at hand

- bottom-up:
 - look for problematic patterns in standard test sets
Practical aspects

What to evaluate?

what kind of phenomena is appropriate?

▶ whatever seems important
▶ the phenomena are usually linguistically motivated, but it is not necessary
▶ also depends on the exact definition of "linguistic"
 ▶ is punctuation a linguistic phenomenon?
 ▶ are out-of-vocabulary words a linguistic phenomenon?
Practical aspects

Granularity?

- many distinct phenomena and their variations
Practical aspects

Granularity?

- like

many distinct sweets and their variations!
Practical aspects

Granularity?

one broad phenomenon and its variations

- quadrilaterals
Practical aspects

Granularity?

one broad phenomenon and its variations

▶ macaroons
Practical aspects

Granularity?

one particular variation of a single phenomenon

- rhombs
Practical aspects

Granularity?

one particular variation of a single phenomenon

- pistachio macaroons
Practical aspects
Granularity?
might be the first step towards
Practical aspects

Granularity?

might be the first step towards
Practical aspects

Structure of entries

shorter or longer segments?

- shorter segments have better focus on many phenomena
- less side effects possible in shorter segments
- some phenomena require longer segments (long range dependencies)
- longer segments might be more natural
Practical aspects

Structure of entries

allow multiple instances of the phenomenon in one entry?

- this could lead to side effects
+ but it can be interesting

▶ create both types of entries (single and multiple instances)
▶ mark each entry with the number of instances
▶ if possible:
 each multiple instance entry = extension of a single instance entry
Practical aspects

Structure of entries

include reference translations?

▶ if they are available, include them
▶ if not:
 ▶ if they are really necessary, provide them
 ▶ if not, it’s fine

▶ post-edited MT output or normal human translation?
 ▶ if not comparing the MT system of the PE with other systems, both are fine
include contrastive examples?

- definitely, if the contrastive NMT evaluation is planned
- possibly, depending on:
 - definition of contrastive examples
 - evaluation procedure
Practical aspects

Structure of entries

Contrastive examples are

1. translations with (usually artificially added) errors
2. entries without the phenomenon of interest

they are definitely necessary

1. if the evaluation relies on higher vs lower scores or on a binary classifier ("correct" vs "incorrect")
2. if the phenomenon can be spuriously added to the translation (for example, inserted negation marker)
Practical aspects

How to create entries?

Where to find the desired phenomena?

► extract natural data samples which contain desired phenomena and use them directly as they are
 ► parallel multilingual data
 ► courses, grammar books (probably monolingual)
► edit and paraphrase natural samples
► completely invent “artificial” entries
► a mixture of everything
Practical aspects

How to create entries?

Manually or automatically?

- manually
 - better control
 - time and resource consuming

- automatically
 - fast and easily scalable
 - more prone to errors

- semi-automatically
 - (try to) take the best of the two worlds
 - ideally:
 automatically with some manual checking/intervention
Practical aspects

Model agnostic or for specific architecture?

What is the main purpose of the CTS?

1. comparing distinct systems (e.g. WMT)
2. general purposes
3. no access to the system
 ⇒ model agnostic

2. measuring progress of own system
 ⇒ model agnostic works, too
 ▶ a tailored test set might be easier to create and/or more appropriate
Practical aspects

Evaluation procedure?

- clear evaluation method should be enabled by the structure of entries (think about it from the very beginning)
- evaluate only the phenomenon
 - all other factors and errors should be ignored
- afterwards, if possible, compare the results with other types of evaluation
 - overall human or automatic scores
 - error classes
 - ...
Practical aspects

Evaluation procedure?

how useful are reference translations?

+ enable automatic evaluation to certain extent
 ▶ the exact extent largely depends on the phenomenon

− can be overly pessimistic
 ▶ always good to have manual inspection for entries with no reference match

+ enable comparison with the overall automatic scores
Practical aspects

Evaluation procedure?

Manually or automatically?

- manually
 - + better control
 - - time and resource consuming

- automatically
 - + fast and easily scalable
 - - more prone to errors

- semi-automatically
 - (try to) take the best of the two worlds
 - ideally:
 automatically with some manual checking/intervention
All in all

Challenge Test Sets are super cool!

- allow for evaluation of specific phenomena
- a number of different phenomena can be tested
- allow for a better understanding of (the) MT system(s)

So go out there and...
Happy Sweet Testing!
List of publicly available Challenging Test Sets
(Test Suites)

Maja Popović and Sheila Castilho

August 2019

• Large Taxonomy
 – English-to-French challenge test set [Isabelle et al., 2017]

• Morphology
 – Morpheval test suites [Burlot and Yvon, 2017, Burlot et al., 2018]
 https://github.com/franckbrl/morpheval
 https://github.com/franckbrl/morpheval_v2
 https://github.com/Helsinki-NLP/en-fi-testsuite

• Grammar
 – English-to-German, five German grammar aspects [Sennrich, 2017]
 https://github.com/rsennrich/lingeval97
 – English-to-Czech, two verb-related clause contrasts [Cinková and Bojar, 2018]
 LINDAT-CLARIN repository: http://hdl.handle.net/11234/1-2856

• Ambiguity
 – pronouns
 * English-to-{French,German} PROTEST test suite [Guillou and Hardmeier, 2016]
 https://bitbucket.org/lianeg/protest/src/master/
 * English-to-German inter-sentential context [Müller et al., 2018]
 https://github.com/ZurichNLP/ContraPro
- nouns
 * German-to-{English,French} [Rios Gonzales et al., 2017, Rios Gonzales et al., 2018]
 https://github.com/a-rios/ContraWSD
 * MuCoW test suite [Raganato et al., 2019]
 https://github.com/Helsinki-NLP/MuCoW

- conjunctions "but" and "and"
 https://github.com/m-popovic/evaluating-ambiguous-conjunctions-MT

- Discourse

 - English-to-French [Bawden et al., 2018]
 https://diamt.limsi.fr/eval.html

 - English-to-Croatian [Šoštaric et al., 2018]
 LINDAT-CLARIN repository: http://hdl.handle.net/11234/1-2855

 - English-to-Russian [Voita et al., 2019]

- Gender of nouns [Stanovsky et al., 2019]
 https://github.com/gabrielStanovsky/mt_gender

References

