International Workshop on Designing Meaning Representations (2019)


pdf (full)
bib (full)
Proceedings of the First International Workshop on Designing Meaning Representations

pdf bib
Proceedings of the First International Workshop on Designing Meaning Representations
Nianwen Xue | William Croft | Jan Hajic | Chu-Ren Huang | Stephan Oepen | Martha Palmer | James Pustejovksy

pdf bib
Cross-Linguistic Semantic Annotation: Reconciling the Language-Specific and the Universal
Jens E. L. Van Gysel | Meagan Vigus | Pavlina Kalm | Sook-kyung Lee | Michael Regan | William Croft

Developers of cross-linguistic semantic annotation schemes face a number of issues not encountered in monolingual annotation. This paper discusses four such issues, related to the establishment of annotation labels, and the treatment of languages with more fine-grained, more coarse-grained, and cross-cutting categories. We propose that a lattice-like architecture of the annotation categories can adequately handle all four issues, and at the same time remain both intuitive for annotators and faithful to typological insights. This position is supported by a brief annotation experiment.

pdf bib
Thirty Musts for Meaning Banking
Lasha Abzianidze | Johan Bos

Meaning banking—creating a semantically annotated corpus for the purpose of semantic parsing or generation—is a challenging task. It is quite simple to come up with a complex meaning representation, but it is hard to design a simple meaning representation that captures many nuances of meaning. This paper lists some lessons learned in nearly ten years of meaning annotation during the development of the Groningen Meaning Bank (Bos et al., 2017) and the Parallel Meaning Bank (Abzianidze et al., 2017). The paper’s format is rather unconventional: there is no explicit related work, no methodology section, no results, and no discussion (and the current snippet is not an abstract but actually an introductory preface). Instead, its structure is inspired by work of Traum (2000) and Bender (2013). The list starts with a brief overview of the existing meaning banks (Section 1) and the rest of the items are roughly divided into three groups: corpus collection (Section 2 and 3, annotation methods (Section 4–11), and design of meaning representations (Section 12–30). We hope this overview will give inspiration and guidance in creating improved meaning banks in the future

pdf bib
Modeling Quantification and Scope in Abstract Meaning Representations
James Pustejovsky | Ken Lai | Nianwen Xue

In this paper, we propose an extension to Abstract Meaning Representations (AMRs) to encode scope information of quantifiers and negation, in a way that overcomes the semantic gaps of the schema while maintaining its cognitive simplicity. Specifically, we address three phenomena not previously part of the AMR specification: quantification, negation (generally), and modality. The resulting representation, which we call “Uniform Meaning Representation” (UMR), adopts the predicative core of AMR and embeds it under a “scope” graph when appropriate. UMR representations differ from other treatments of quantification and modal scope phenomena in two ways: (a) they are more transparent; and (b) they specify default scope when possible.‘

pdf bib
Parsing Meaning Representations: Is Easier Always Better?
Zi Lin | Nianwen Xue

The parsing accuracy varies a great deal for different meaning representations. In this paper, we compare the parsing performances between Abstract Meaning Representation (AMR) and Minimal Recursion Semantics (MRS), and provide an in-depth analysis of what factors contributed to the discrepancy in their parsing accuracy. By crystalizing the trade-off between representation expressiveness and ease of automatic parsing, we hope our results can help inform the design of the next-generation meaning representations.

pdf bib
GKR: Bridging the Gap between Symbolic/structural and Distributional Meaning Representations
Aikaterini-Lida Kalouli | Richard Crouch | Valeria de Paiva

Three broad approaches have been attempted to combine distributional and structural/symbolic aspects to construct meaning representations: a) injecting linguistic features into distributional representations, b) injecting distributional features into symbolic representations or c) combining structural and distributional features in the final representation. This work focuses on an example of the third and less studied approach: it extends the Graphical Knowledge Representation (GKR) to include distributional features and proposes a division of semantic labour between the distributional and structural/symbolic features. We propose two extensions of GKR that clearly show this division and empirically test one of the proposals on an NLI dataset with hard compositional pairs.

pdf bib
Generating Discourse Inferences from Unscoped Episodic Logical Formulas
Gene Kim | Benjamin Kane | Viet Duong | Muskaan Mendiratta | Graeme McGuire | Sophie Sackstein | Georgiy Platonov | Lenhart Schubert

Unscoped episodic logical form (ULF) is a semantic representation capturing the predicate-argument structure of English within the episodic logic formalism in relation to the syntactic structure, while leaving scope, word sense, and anaphora unresolved. We describe how ULF can be used to generate natural language inferences that are grounded in the semantic and syntactic structure through a small set of rules defined over interpretable predicates and transformations on ULFs. The semantic restrictions placed by ULF semantic types enables us to ensure that the inferred structures are semantically coherent while the nearness to syntax enables accurate mapping to English. We demonstrate these inferences on four classes of conversationally-oriented inferences in a mixed genre dataset with 68.5% precision from human judgments.

pdf bib
A Plea for Information Structure as a Part of Meaning Representation
Eva Hajicova

The view that the representation of information structure (IS) should be a part of (any type of) representation of meaning is based on the fact that IS is a semantically relevant phenomenon. In the contribution, three arguments supporting this view are briefly summarized, namely, the relation of IS to the interpretation of negation and presupposition, the relevance of IS to the understanding of discourse connectivity and for the establishment and interpretation of coreference relations. Afterwards, possible integration of the description of the main ingredient of IS into a meaning representation is illustrated.

pdf bib
TCL - a Lexicon of Turkish Discourse Connectives
Deniz Zeyrek | Kezban Başıbüyük

It is known that discourse connectives are the most salient indicators of discourse relations. State-of-the-art parsers being developed to predict explicit discourse connectives exploit annotated discourse corpora but a lexicon of discourse connectives is also needed to enable further research in discourse structure and support the development of language technologies that use these structures for text understanding. This paper presents a lexicon of Turkish discourse connectives built by automatic means. The lexicon has the format of the German connective lexicon, DiMLex, where for each discourse connective, information about the connective‘s orthographic variants, syntactic category and senses are provided along with sample relations. In this paper, we describe the data sources we used and the development steps of the lexicon.

pdf bib
Meta-Semantic Representation for Early Detection of Alzheimer’s Disease
Jinho D. Choi | Mengmei Li | Felicia Goldstein | Ihab Hajjar

This paper presents a new task-oriented meaning representation called meta-semantics, that is designed to detect patients with early symptoms of Alzheimer’s disease by analyzing their language beyond a syntactic or semantic level. Meta-semantic representation consists of three parts, entities, predicate argument structures, and discourse attributes, that derive rich knowledge graphs. For this study, 50 controls and 50 patients with mild cognitive impairment (MCI) are selected, and meta-semantic representation is annotated on their speeches transcribed in text. Inter-annotator agreement scores of 88%, 82%, and 89% are achieved for the three types of annotation, respectively. Five analyses are made using this annotation, depicting clear distinctions between the control and MCI groups. Finally, a neural model is trained on features extracted from those analyses to classify MCI patients from normal controls, showing a high accuracy of 82% that is very promising.

pdf bib
Ellipsis in Chinese AMR Corpus
Yihuan Liu | Bin Li | Peiyi Yan | Li Song | Weiguang Qu

Ellipsis is very common in language. It’s necessary for natural language processing to restore the elided elements in a sentence. However, there’s only a few corpora annotating the ellipsis, which draws back the automatic detection and recovery of the ellipsis. This paper introduces the annotation of ellipsis in Chinese sentences, using a novel graph-based representation Abstract Meaning Representation (AMR), which has a good mechanism to restore the elided elements manually. We annotate 5,000 sentences selected from Chinese TreeBank (CTB). We find that 54.98% of sentences have ellipses. 92% of the ellipses are restored by copying the antecedents’ concepts. and 12.9% of them are the new added concepts. In addition, we find that the elided element is a word or phrase in most cases, but sometimes only the head of a phrase or parts of a phrase, which is rather hard for the automatic recovery of ellipsis.

pdf bib
Event Structure Representation: Between Verbs and Argument Structure Constructions
Pavlina Kalm | Michael Regan | William Croft

This paper proposes a novel representation of event structure by separating verbal semantics and the meaning of argument structure constructions that verbs occur in. Our model demonstrates how the two meaning representations interact. Our model thus effectively deals with various verb construals in different argument structure constructions, unlike purely verb-based approaches. However, unlike many constructionally-based approaches, we also provide a richer representation of the event structure evoked by the verb meaning.

pdf bib
Distributional Semantics Meets Construction Grammar. towards a Unified Usage-Based Model of Grammar and Meaning
Giulia Rambelli | Emmanuele Chersoni | Philippe Blache | Chu-Ren Huang | Alessandro Lenci

In this paper, we propose a new type of semantic representation of Construction Grammar that combines constructions with the vector representations used in Distributional Semantics. We introduce a new framework, Distributional Construction Grammar, where grammar and meaning are systematically modeled from language use, and finally, we discuss the kind of contributions that distributional models can provide to CxG representation from a linguistic and cognitive perspective.

pdf bib
Meaning Representation of Null Instantiated Semantic Roles in FrameNet
Miriam R L Petruck

Humans have the unique ability to infer information about participants in a scene, even if they are not mentioned in a text about that scene. Computer systems cannot do so without explicit information about those participants. This paper addresses the linguistic phenomenon of null-instantiated frame elements, i.e., implicit semantic roles, and their representation in FrameNet (FN). It motivates FN’s annotation practice, and illustrates three types of null-instantiated arguments that FrameNet tracks, noting that other lexical resources do not record such semantic-pragmatic information, despite its need in natural language understanding (NLU), and the elaborate efforts to create new datasets. It challenges the community to appeal to FN data to develop more sophisticated techniques for recognizing implicit semantic roles, and creating needed datasets. Although the annotation of null-instantiated roles was lexicographically motivated, FN provides useful information for text processing, and therefore must be considered in the design of any meaning representation for natural language understanding.

pdf bib
Copula and Case-Stacking Annotations for Korean AMR
Hyonsu Choe | Jiyoon Han | Hyejin Park | Hansaem Kim

This paper concerns the application of Abstract Meaning Representation (AMR) to Korean. In this regard, it focuses on the copula construction and its negation and the case-stacking phenomenon thereof. To illustrate this clearly, we reviewed the :domain annotation scheme from various perspectives. In this process, the existing annotation guidelines were improved to devise annotation schemes for each issue under the principle of pursuing consistency and efficiency of annotation without distorting the characteristics of Korean.

pdf bib
ClearTAC: Verb Tense, Aspect, and Form Classification Using Neural Nets
Skatje Myers | Martha Palmer

This paper proposes using a Bidirectional LSTM-CRF model in order to identify the tense and aspect of verbs. The information that this classifier outputs can be useful for ordering events and can provide a pre-processing step to improve efficiency of annotating this type of information. This neural network architecture has been successfully employed for other sequential labeling tasks, and we show that it significantly outperforms the rule-based tool TMV-annotator on the Propbank I dataset.

pdf bib
Preparing SNACS for Subjects and Objects
Adi Shalev | Jena D. Hwang | Nathan Schneider | Vivek Srikumar | Omri Abend | Ari Rappoport

Research on adpositions and possessives in multiple languages has led to a small inventory of general-purpose meaning classes that disambiguate tokens. Importantly, that work has argued for a principled separation of the semantic role in a scene from the function coded by morphosyntax. Here, we ask whether this approach can be generalized beyond adpositions and possessives to cover all scene participants—including subjects and objects—directly, without reference to a frame lexicon. We present new guidelines for English and the results of an interannotator agreement study.

pdf bib
A Case Study on Meaning Representation for Vietnamese
Ha Linh | Huyen Nguyen

This paper presents a case study on meaning representation for Vietnamese. Having introduced several existing semantic representation schemes for different languages, we select as basis for our work on Vietnamese AMR (Abstract Meaning Representation). From it, we define a meaning representation label set by adapting the English schema and taking into account the specific characteristics of Vietnamese.

pdf bib
VerbNet Representations: Subevent Semantics for Transfer Verbs
Susan Windisch Brown | Julia Bonn | James Gung | Annie Zaenen | James Pustejovsky | Martha Palmer

This paper announces the release of a new version of the English lexical resource VerbNet with substantially revised semantic representations designed to facilitate computer planning and reasoning based on human language. We use the transfer of possession and transfer of information event representations to illustrate both the general framework of the representations and the types of nuances the new representations can capture. These representations use a Generative Lexicon-inspired subevent structure to track attributes of event participants across time, highlighting oppositions and temporal and causal relations among the subevents.

pdf bib
Semantically Constrained Multilayer Annotation: The Case of Coreference
Jakob Prange | Nathan Schneider | Omri Abend

We propose a coreference annotation scheme as a layer on top of the Universal Conceptual Cognitive Annotation foundational layer, treating units in predicate-argument structure as a basis for entity and event mentions. We argue that this allows coreference annotators to sidestep some of the challenges faced in other schemes, which do not enforce consistency with predicate-argument structure and vary widely in what kinds of mentions they annotate and how. The proposed approach is examined with a pilot annotation study and compared with annotations from other schemes.

pdf bib
Towards Universal Semantic Representation
Huaiyu Zhu | Yunyao Li | Laura Chiticariu

Natural language understanding at the semantic level and independent of language variations is of great practical value. Existing approaches such as semantic role labeling (SRL) and abstract meaning representation (AMR) still have features related to the peculiarities of the particular language. In this work we describe various challenges and possible solutions in designing a semantic representation that is universal across a variety of languages.

pdf bib
A Dependency Structure Annotation for Modality
Meagan Vigus | Jens E. L. Van Gysel | William Croft

This paper presents an annotation scheme for modality that employs a dependency structure. Events and sources (here, conceivers) are represented as nodes and epistemic strength relations characterize the edges. The epistemic strength values are largely based on Saurí and Pustejovsky’s (2009) FactBank, while the dependency structure mirrors Zhang and Xue’s (2018b) approach to temporal relations. Six documents containing 377 events have been annotated by two expert annotators with high levels of agreement.

pdf bib
Augmenting Abstract Meaning Representation for Human-Robot Dialogue
Claire Bonial | Lucia Donatelli | Stephanie M. Lukin | Stephen Tratz | Ron Artstein | David Traum | Clare Voss

We detail refinements made to Abstract Meaning Representation (AMR) that make the representation more suitable for supporting a situated dialogue system, where a human remotely controls a robot for purposes of search and rescue and reconnaissance. We propose 36 augmented AMRs that capture speech acts, tense and aspect, and spatial information. This linguistic information is vital for representing important distinctions, for example whether the robot has moved, is moving, or will move. We evaluate two existing AMR parsers for their performance on dialogue data. We also outline a model for graph-to-graph conversion, in which output from AMR parsers is converted into our refined AMRs. The design scheme presented here, though task-specific, is extendable for broad coverage of speech acts using AMR in future task-independent work.