SIGDial Conference (2019)


up

pdf (full)
bib (full)
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue

pdf bib
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue
Satoshi Nakamura | Milica Gasic | Ingrid Zukerman | Gabriel Skantze | Mikio Nakano | Alexandros Papangelis | Stefan Ultes | Koichiro Yoshino

pdf bib
Deep Reinforcement Learning For Modeling Chit-Chat Dialog With Discrete Attributes
Chinnadhurai Sankar | Sujith Ravi

Open domain dialog systems face the challenge of being repetitive and producing generic responses. In this paper, we demonstrate that by conditioning the response generation on interpretable discrete dialog attributes and composed attributes, it helps improve the model perplexity and results in diverse and interesting non-redundant responses. We propose to formulate the dialog attribute prediction as a reinforcement learning (RL) problem and use policy gradients methods to optimize utterance generation using long-term rewards. Unlike existing RL approaches which formulate the token prediction as a policy, our method reduces the complexity of the policy optimization by limiting the action space to dialog attributes, thereby making the policy optimization more practical and sample efficient. We demonstrate this with experimental and human evaluations.

pdf bib
Improving Interaction Quality Estimation with BiLSTMs and the Impact on Dialogue Policy Learning
Stefan Ultes

Learning suitable and well-performing dialogue behaviour in statistical spoken dialogue systems has been in the focus of research for many years. While most work which is based on reinforcement learning employs an objective measure like task success for modelling the reward signal, we use a reward based on user satisfaction estimation. We propose a novel estimator and show that it outperforms all previous estimators while learning temporal dependencies implicitly. Furthermore, we apply this novel user satisfaction estimation model live in simulated experiments where the satisfaction estimation model is trained on one domain and applied in many other domains which cover a similar task. We show that applying this model results in higher estimated satisfaction, similar task success rates and a higher robustness to noise.

pdf bib
Lifelong and Interactive Learning of Factual Knowledge in Dialogues
Sahisnu Mazumder | Bing Liu | Shuai Wang | Nianzu Ma

Dialogue systems are increasingly using knowledge bases (KBs) storing real-world facts to help generate quality responses. However, as the KBs are inherently incomplete and remain fixed during conversation, it limits dialogue systems’ ability to answer questions and to handle questions involving entities or relations that are not in the KB. In this paper, we make an attempt to propose an engine for Continuous and Interactive Learning of Knowledge (CILK) for dialogue systems to give them the ability to continuously and interactively learn and infer new knowledge during conversations. With more knowledge accumulated over time, they will be able to learn better and answer more questions. Our empirical evaluation shows that CILK is promising.

pdf bib
Few-Shot Dialogue Generation Without Annotated Data: A Transfer Learning Approach
Igor Shalyminov | Sungjin Lee | Arash Eshghi | Oliver Lemon

Learning with minimal data is one of the key challenges in the development of practical, production-ready goal-oriented dialogue systems. In a real-world enterprise setting where dialogue systems are developed rapidly and are expected to work robustly for an ever-growing variety of domains, products, and scenarios, efficient learning from a limited number of examples becomes indispensable. In this paper, we introduce a technique to achieve state-of-the-art dialogue generation performance in a few-shot setup, without using any annotated data. We do this by leveraging background knowledge from a larger, more highly represented dialogue source — namely, the MetaLWOz dataset. We evaluate our model on the Stanford Multi-Domain Dialogue Dataset, consisting of human-human goal-oriented dialogues in in-car navigation, appointment scheduling, and weather information domains. We show that our few-shot approach achieves state-of-the art results on that dataset by consistently outperforming the previous best model in terms of BLEU and Entity F1 scores, while being more data-efficient than it by not requiring any data annotation.

pdf bib
SIM: A Slot-Independent Neural Model for Dialogue State Tracking
Chenguang Zhu | Michael Zeng | Xuedong Huang

Dialogue state tracking is an important component in task-oriented dialogue systems to identify users’ goals and requests as a dialogue proceeds. However, as most previous models are dependent on dialogue slots, the model complexity soars when the number of slots increases. In this paper, we put forward a slot-independent neural model (SIM) to track dialogue states while keeping the model complexity invariant to the number of dialogue slots. The model utilizes attention mechanisms between user utterance and system actions. SIM achieves state-of-the-art results on WoZ and DSTC2 tasks, with only 20% of the model size of previous models.

pdf bib
Simple, Fast, Accurate Intent Classification and Slot Labeling for Goal-Oriented Dialogue Systems
Arshit Gupta | John Hewitt | Katrin Kirchhoff

With the advent of conversational assistants, like Amazon Alexa, Google Now, etc., dialogue systems are gaining a lot of traction, especially in industrial setting. These systems typically consist of Spoken Language understanding component which, in turn, consists of two tasks - Intent Classification (IC) and Slot Labeling (SL). Generally, these two tasks are modeled together jointly to achieve best performance. However, this joint modeling adds to model obfuscation. In this work, we first design framework for a modularization of joint IC-SL task to enhance architecture transparency. Then, we explore a number of self-attention, convolutional, and recurrent models, contributing a large-scale analysis of modeling paradigms for IC+SL across two datasets. Finally, using this framework, we propose a class of ‘label-recurrent’ models that otherwise non-recurrent, with a 10-dimensional representation of the label history, and show that our proposed systems are easy to interpret, highly accurate (achieving over 30% error reduction in SL over the state-of-the-art on the Snips dataset), as well as fast, at 2x the inference and 2/3 to 1/2 the training time of comparable recurrent models, thus giving an edge in critical real-world systems.

pdf bib
Time Masking: Leveraging Temporal Information in Spoken Dialogue Systems
Rylan Conway | Mathias Lambert

In a spoken dialogue system, dialogue state tracker (DST) components track the state of the conversation by updating a distribution of values associated with each of the slots being tracked for the current user turn, using the interactions until then. Much of the previous work has relied on modeling the natural order of the conversation, using distance based offsets as an approximation of time. In this work, we hypothesize that leveraging the wall-clock temporal difference between turns is crucial for finer-grained control of dialogue scenarios. We develop a novel approach that applies a time mask, based on the wall-clock time difference, to the associated slot embeddings and empirically demonstrate that our proposed approach outperforms existing approaches that leverage distance offsets, on both an internal benchmark dataset as well as DSTC2.

pdf bib
To Combine or Not To Combine? A Rainbow Deep Reinforcement Learning Agent for Dialog Policies
Dirk Väth | Ngoc Thang Vu

In this paper, we explore state-of-the-art deep reinforcement learning methods for dialog policy training such as prioritized experience replay, double deep Q-Networks, dueling network architectures and distributional learning. Our main findings show that each individual method improves the rewards and the task success rate but combining these methods in a Rainbow agent, which performs best across tasks and environments, is a non-trivial task. We, therefore, provide insights about the influence of each method on the combination and how to combine them to form a Rainbow agent.

pdf bib
Contextualized Representations for Low-resource Utterance Tagging
Bhargavi Paranjape | Graham Neubig

Utterance-level analysis of the speaker’s intentions and emotions is a core task in conversational understanding. Depending on the end objective of the conversational understanding task, different categorical dialog-act or affect labels are expertly designed to cover specific aspects of the speakers’ intentions or emotions respectively. Accurately annotating with these labels requires a high level of human expertise, and thus applying this process to a large conversation corpus or new domains is prohibitively expensive. The resulting paucity of data limits the use of sophisticated neural models. In this paper, we tackle these limitations by performing unsupervised training of utterance representations from a large corpus of spontaneous dialogue data. Models initialized with these representations achieve competitive performance on utterance-level dialogue-act recognition and emotion classification, especially in low-resource settings encountered when analyzing conversations in new domains.

pdf bib
Capturing Dialogue State Variable Dependencies with an Energy-based Neural Dialogue State Tracker
Anh Duong Trinh | Robert J. Ross | John D. Kelleher

Dialogue state tracking requires the population and maintenance of a multi-slot frame representation of the dialogue state. Frequently, dialogue state tracking systems assume independence between slot values within a frame. In this paper we argue that treating the prediction of each slot value as an independent prediction task may ignore important associations between the slot values, and, consequently, we argue that treating dialogue state tracking as a structured prediction problem can help to improve dialogue state tracking performance. To support this argument, the research presented in this paper is structured into three stages: (i) analyzing variable dependencies in dialogue data; (ii) applying an energy-based methodology to model dialogue state tracking as a structured prediction task; and (iii) evaluating the impact of inter-slot relationships on model performance. Overall we demonstrate that modelling the associations between target slots with an energy-based formalism improves dialogue state tracking performance in a number of ways.

pdf bib
Leveraging Non-Conversational Tasks for Low Resource Slot Filling: Does it help?
Samuel Louvan | Bernardo Magnini

Slot filling is a core operation for utterance understanding in task-oriented dialogue systems. Slots are typically domain-specific, and adding new domains to a dialogue system involves data and time-intensive processes. A popular technique to address the problem is transfer learning, where it is assumed the availability of a large slot filling dataset for the source domain, to be used to help slot filling on the target domain, with fewer data. In this work, instead, we propose to leverage source tasks based on semantically related non-conversational resources (e.g., semantic sequence tagging datasets), as they are both cheaper to obtain and reusable to several slot filling domains. We show that using auxiliary non-conversational tasks in a multi-task learning setup consistently improves low resource slot filling performance.

pdf bib
Collaborative Multi-Agent Dialogue Model Training Via Reinforcement Learning
Alexandros Papangelis | Yi-Chia Wang | Piero Molino | Gokhan Tur

Some of the major challenges in training conversational agents include the lack of large-scale data of real-world complexity, defining appropriate evaluation measures, and managing meaningful conversations across many topics over long periods of time. Moreover, most works tend to assume that the conversational agent’s environment is stationary, a somewhat strong assumption. To remove this assumption and overcome the lack of data, we take a step away from the traditional training pipeline and model the conversation as a stochastic collaborative game. Each agent (player) has a role (“assistant”, “tourist”, “eater”, etc.) and their own objectives, and can only interact via language they generate. Each agent, therefore, needs to learn to operate optimally in an environment with multiple sources of uncertainty (its own LU and LG, the other agent’s LU, Policy, and LG). In this work, we present the first complete attempt at concurrently training conversational agents that communicate only via self-generated language and show that they outperform supervised and deep learning baselines.

pdf bib
Scoring Interactional Aspects of Human-Machine Dialog for Language Learning and Assessment using Text Features
Vikram Ramanarayanan | Matthew Mulholland | Yao Qian

While there has been much work in the language learning and assessment literature on human and automated scoring of essays and short constructed responses, there is little to no work examining text features for scoring of dialog data, particularly interactional aspects thereof, to assess conversational proficiency over and above constructed response skills. Our work bridges this gap by investigating both human and automated approaches towards scoring human–machine text dialog in the context of a real-world language learning application. We collected conversational data of human learners interacting with a cloud-based standards-compliant dialog system, triple-scored these data along multiple dimensions of conversational proficiency, and then analyzed the performance trends. We further examined two different approaches to automated scoring of such data and show that these approaches are able to perform at or above par with human agreement for a majority of dimensions of the scoring rubric.

pdf bib
Spoken Conversational Search for General Knowledge
Lina M. Rojas Barahona | Pascal Bellec | Benoit Besset | Martinho Dossantos | Johannes Heinecke | Munshi Asadullah | Olivier Leblouch | Jeanyves. Lancien | Geraldine Damnati | Emmanuel Mory | Frederic Herledan

We present a spoken conversational question answering proof of concept that is able to answer questions about general knowledge from Wikidata. The dialogue agent does not only orchestrate various agents but also solve coreferences and ellipsis.

pdf bib
Graph2Bots, Unsupervised Assistance for Designing Chatbots
Jean-Leon Bouraoui | Sonia Le Meitour | Romain Carbou | Lina M. Rojas Barahona | Vincent Lemaire

We present Graph2Bots, a tool for assisting conversational agent designers. It extracts a graph representation from human-human conversations by using unsupervised learning. The generated graph contains the main stages of the dialogue and their inner transitions. The graphical user interface (GUI) then allows graph editing.

pdf bib
On a Chatbot Conducting Dialogue-in-Dialogue
Boris Galitsky | Dmitry Ilvovsky | Elizaveta Goncharova

We demo a chatbot that delivers content in the form of virtual dialogues automatically produced from plain texts extracted and selected from documents. This virtual dialogue content is provided in the form of answers derived from the found and selected documents split into fragments, and questions are automatically generated for these answers.

pdf bib
DeepCopy: Grounded Response Generation with Hierarchical Pointer Networks
Semih Yavuz | Abhinav Rastogi | Guan-Lin Chao | Dilek Hakkani-Tur

Recent advances in neural sequence-to-sequence models have led to promising results for several language generation-based tasks, including dialogue response generation, summarization, and machine translation. However, these models are known to have several problems, especially in the context of chit-chat based dialogue systems: they tend to generate short and dull responses that are often too generic. Furthermore, these models do not ground conversational responses on knowledge and facts, resulting in turns that are not accurate, informative and engaging for the users. In this paper, we propose and experiment with a series of response generation models that aim to serve in the general scenario where in addition to the dialogue context, relevant unstructured external knowledge in the form of text is also assumed to be available for models to harness. Our proposed approach extends pointer-generator networks (See et al., 2017) by allowing the decoder to hierarchically attend and copy from external knowledge in addition to the dialogue context. We empirically show the effectiveness of the proposed model compared to several baselines including (Ghazvininejadet al., 2018; Zhang et al., 2018) through both automatic evaluation metrics and human evaluation on ConvAI2 dataset.

pdf bib
Towards End-to-End Learning for Efficient Dialogue Agent by Modeling Looking-ahead Ability
Zhuoxuan Jiang | Xian-Ling Mao | Ziming Huang | Jie Ma | Shaochun Li

Learning an efficient manager of dialogue agent from data with little manual intervention is important, especially for goal-oriented dialogues. However, existing methods either take too many manual efforts (e.g. reinforcement learning methods) or cannot guarantee the dialogue efficiency (e.g. sequence-to-sequence methods). In this paper, we address this problem by proposing a novel end-to-end learning model to train a dialogue agent that can look ahead for several future turns and generate an optimal response to make the dialogue efficient. Our method is data-driven and does not require too much manual work for intervention during system design. We evaluate our method on two datasets of different scenarios and the experimental results demonstrate the efficiency of our model.

pdf bib
Unsupervised Dialogue Spectrum Generation for Log Dialogue Ranking
Xinnuo Xu | Yizhe Zhang | Lars Liden | Sungjin Lee

Although the data-driven approaches of some recent bot building platforms make it possible for a wide range of users to easily create dialogue systems, those platforms don’t offer tools for quickly identifying which log dialogues contain problems. This is important since corrections to log dialogues provide a means to improve performance after deployment. A log dialogue ranker, which ranks problematic dialogues higher, is an essential tool due to the sheer volume of log dialogues that could be generated. However, training a ranker typically requires labelling a substantial amount of data, which is not feasible for most users. In this paper, we present a novel unsupervised approach for dialogue ranking using GANs and release a corpus of labelled dialogues for evaluation and comparison with supervised methods. The evaluation result shows that our method compares favorably to supervised methods without any labelled data.

pdf bib
Tree-Structured Semantic Encoder with Knowledge Sharing for Domain Adaptation in Natural Language Generation
Bo-Hsiang Tseng | Paweł Budzianowski | Yen-chen Wu | Milica Gasic

Domain adaptation in natural language generation (NLG) remains challenging because of the high complexity of input semantics across domains and limited data of a target domain. This is particularly the case for dialogue systems, where we want to be able to seamlessly include new domains into the conversation. Therefore, it is crucial for generation models to share knowledge across domains for the effective adaptation from one domain to another. In this study, we exploit a tree-structured semantic encoder to capture the internal structure of complex semantic representations required for multi-domain dialogues in order to facilitate knowledge sharing across domains. In addition, a layer-wise attention mechanism between the tree encoder and the decoder is adopted to further improve the model’s capability. The automatic evaluation results show that our model outperforms previous methods in terms of the BLEU score and the slot error rate, in particular when the adaptation data is limited. In subjective evaluation, human judges tend to prefer the sentences generated by our model, rating them more highly on informativeness and naturalness than other systems.

pdf bib
Structured Fusion Networks for Dialog
Shikib Mehri | Tejas Srinivasan | Maxine Eskenazi

Neural dialog models have exhibited strong performance, however their end-to-end nature lacks a representation of the explicit structure of dialog. This results in a loss of generalizability, controllability and a data-hungry nature. Conversely, more traditional dialog systems do have strong models of explicit structure. This paper introduces several approaches for explicitly incorporating structure into neural models of dialog. Structured Fusion Networks first learn neural dialog modules corresponding to the structured components of traditional dialog systems and then incorporate these modules in a higher-level generative model. Structured Fusion Networks obtain strong results on the MultiWOZ dataset, both with and without reinforcement learning. Structured Fusion Networks are shown to have several valuable properties, including better domain generalizability, improved performance in reduced data scenarios and robustness to divergence during reinforcement learning.

pdf bib
Flexibly-Structured Model for Task-Oriented Dialogues
Lei Shu | Piero Molino | Mahdi Namazifar | Hu Xu | Bing Liu | Huaixiu Zheng | Gokhan Tur

This paper proposes a novel end-to-end architecture for task-oriented dialogue systems. It is based on a simple and practical yet very effective sequence-to-sequence approach, where language understanding and state tracking tasks are modeled jointly with a structured copy-augmented sequential decoder and a multi-label decoder for each slot. The policy engine and language generation tasks are modeled jointly following that. The copy-augmented sequential decoder deals with new or unknown values in the conversation, while the multi-label decoder combined with the sequential decoder ensures the explicit assignment of values to slots. On the generation part, slot binary classifiers are used to improve performance. This architecture is scalable to real-world scenarios and is shown through an empirical evaluation to achieve state-of-the-art performance on both the Cambridge Restaurant dataset and the Stanford in-car assistant dataset.

pdf bib
FriendsQA: Open-Domain Question Answering on TV Show Transcripts
Zhengzhe Yang | Jinho D. Choi

This paper presents FriendsQA, a challenging question answering dataset that contains 1,222 dialogues and 10,610 open-domain questions, to tackle machine comprehension on everyday conversations. Each dialogue, involving multiple speakers, is annotated with several types of questions regarding the dialogue contexts, and the answers are annotated with certain spans in the dialogue. A series of crowdsourcing tasks are conducted to ensure good annotation quality, resulting a high inter-annotator agreement of 81.82%. A comprehensive annotation analytics is provided for a deeper understanding in this dataset. Three state-of-the-art QA systems are experimented, R-Net, QANet, and BERT, and evaluated on this dataset. BERT in particular depicts promising results, an accuracy of 74.2% for answer utterance selection and an F1-score of 64.2% for answer span selection, suggesting that the FriendsQA task is hard yet has a great potential of elevating QA research on multiparty dialogue to another level.

pdf bib
Foundations of Collaborative Task-Oriented Dialogue: What’s in a Slot?
Philip Cohen

In this paper, we examine the foundations of task-oriented dialogues, in which systems are requested to perform tasks for humans. We argue that the way this dialogue task has been framed has limited its applicability to processing simple requests with atomic “slot-fillers”. However, real task-oriented dialogues can contain more complex utterances that provide non-atomic constraints on slot values. For example, in response to the system’s question “What time do you want me to reserve the restaurant?”, a user should be able to say “the earliest time available,” which cannot be handled by classic “intent + slots” approaches that do not incorporate expressive logical form meaning representations. Furthermore, situations for which it would be desirable to build task-oriented dialogue systems, e.g., to engage in mixed-initiative, collaborative or multiparty dialogues, will require a more general approach. In order to overcome these limitations and to provide such an approach, we give a logical analysis of the “intent+slot” dialogue setting using a modal logic of intention and including a more expansive notion of “dialogue state”. Finally, we briefly discuss our program of research to build a next generation of plan-based dialogue systems that goes beyond “intent + slots”.

pdf bib
Speaker-adapted neural-network-based fusion for multimodal reference resolution
Diana Kleingarn | Nima Nabizadeh | Martin Heckmann | Dorothea Kolossa

Humans use a variety of approaches to reference objects in the external world, including verbal descriptions, hand and head gestures, eye gaze or any combination of them. The amount of useful information from each modality, however, may vary depending on the specific person and on several other factors. For this reason, it is important to learn the correct combination of inputs for inferring the best-fitting reference. In this paper, we investigate appropriate speaker-dependent and independent fusion strategies in a multimodal reference resolution task. We show that without any change in the modality models, only through an optimized fusion technique, it is possible to reduce the error rate of the system on a reference resolution task by more than 50%.

pdf bib
Learning Question-Guided Video Representation for Multi-Turn Video Question Answering
Guan-Lin Chao | Abhinav Rastogi | Semih Yavuz | Dilek Hakkani-Tur | Jindong Chen | Ian Lane

Understanding and conversing about dynamic scenes is one of the key capabilities of AI agents that navigate the environment and convey useful information to humans. Video question answering is a specific scenario of such AI-human interaction where an agent generates a natural language response to a question regarding the video of a dynamic scene. Incorporating features from multiple modalities, which often provide supplementary information, is one of the challenging aspects of video question answering. Furthermore, a question often concerns only a small segment of the video, hence encoding the entire video sequence using a recurrent neural network is not computationally efficient. Our proposed question-guided video representation module efficiently generates the token-level video summary guided by each word in the question. The learned representations are then fused with the question to generate the answer. Through empirical evaluation on the Audio Visual Scene-aware Dialog (AVSD) dataset, our proposed models in single-turn and multi-turn question answering achieve state-of-the-art performance on several automatic natural language generation evaluation metrics.

pdf bib
Zero-shot transfer for implicit discourse relation classification
Murathan Kurfalı | Robert Östling

Automatically classifying the relation between sentences in a discourse is a challenging task, in particular when there is no overt expression of the relation. It becomes even more challenging by the fact that annotated training data exists only for a small number of languages, such as English and Chinese. We present a new system using zero-shot transfer learning for implicit discourse relation classification, where the only resource used for the target language is unannotated parallel text. This system is evaluated on the discourse-annotated TED-MDB parallel corpus, where it obtains good results for all seven languages using only English training data.

pdf bib
A Quantitative Analysis of Patients’ Narratives of Heart Failure
Sabita Acharya | Barbara Di Eugenio | Andrew Boyd | Richard Cameron | Karen Dunn Lopez | Pamela Martyn-Nemeth | Debaleena Chattopadhyay | Pantea Habibi | Carolyn Dickens | Haleh Vatani | Amer Ardati

Patients with chronic conditions like heart failure are the most likely to be re-hospitalized. One step towards avoiding re-hospitalization is to devise strategies for motivating patients to take care of their own health. In this paper, we perform a quantitative analysis of patients’ narratives of their experience with heart failure and explore the different topics that patients talk about. We compare two different groups of patients- those unable to take charge of their illness, and those who make efforts to improve their health. We will use the findings from our analysis to refine and personalize the summaries of hospitalizations that our system automatically generates.

pdf bib
TDDiscourse: A Dataset for Discourse-Level Temporal Ordering of Events
Aakanksha Naik | Luke Breitfeller | Carolyn Rose

Prior work on temporal relation classification has focused extensively on event pairs in the same or adjacent sentences (local), paying scant attention to discourse-level (global) pairs. This restricts the ability of systems to learn temporal links between global pairs, since reliance on local syntactic features suffices to achieve reasonable performance on existing datasets. However, systems should be capable of incorporating cues from document-level structure to assign temporal relations. In this work, we take a first step towards discourse-level temporal ordering by creating TDDiscourse, the first dataset focusing specifically on temporal links between event pairs which are more than one sentence apart. We create TDDiscourse by augmenting TimeBank-Dense, a corpus of English news articles, manually annotating global pairs that cannot be inferred automatically from existing annotations. Our annotations double the number of temporal links in TimeBank-Dense, while possessing several desirable properties such as focusing on long-distance pairs and not being automatically inferable. We adapt and benchmark the performance of three state-of-the-art models on TDDiscourse and observe that existing systems indeed find discourse-level temporal ordering harder.

pdf bib
Real Life Application of a Question Answering System Using BERT Language Model
Francesca Alloatti | Luigi Di Caro | Gianpiero Sportelli

It is often hard to apply the newest advances in research to real life scenarios. They usually require the resolution of some specific task applied to a restricted domain, all the while providing small amounts of data to begin with. In this study we apply one of the newest innovations in Deep Learning to a task of text classification. We created a question answering system in Italian that provides information about a specific subject, e-invoicing and digital billing. Italy recently introduced a new legislation about e-invoicing and people have some legit doubts, therefore a large share of professionals could benefit from this tool.

pdf bib
Hierarchical Multi-Task Natural Language Understanding for Cross-domain Conversational AI: HERMIT NLU
Andrea Vanzo | Emanuele Bastianelli | Oliver Lemon

We present a new neural architecture for wide-coverage Natural Language Understanding in Spoken Dialogue Systems. We develop a hierarchical multi-task architecture, which delivers a multi-layer representation of sentence meaning (i.e., Dialogue Acts and Frame-like structures). The architecture is a hierarchy of self-attention mechanisms and BiLSTM encoders followed by CRF tagging layers. We describe a variety of experiments, showing that our approach obtains promising results on a dataset annotated with Dialogue Acts and Frame Semantics. Moreover, we demonstrate its applicability to a different, publicly available NLU dataset annotated with domain-specific intents and corresponding semantic roles, providing overall performance higher than state-of-the-art tools such as RASA, Dialogflow, LUIS, and Watson. For example, we show an average 4.45% improvement in entity tagging F-score over Rasa, Dialogflow and LUIS.

pdf bib
Dialog State Tracking: A Neural Reading Comprehension Approach
Shuyang Gao | Abhishek Sethi | Sanchit Agarwal | Tagyoung Chung | Dilek Hakkani-Tur

Dialog state tracking is used to estimate the current belief state of a dialog given all the preceding conversation. Machine reading comprehension, on the other hand, focuses on building systems that read passages of text and answer questions that require some understanding of passages. We formulate dialog state tracking as a reading comprehension task to answer the question what is the state of the current dialog? after reading conversational context. In contrast to traditional state tracking methods where the dialog state is often predicted as a distribution over a closed set of all the possible slot values within an ontology, our method uses a simple attention-based neural network to point to the slot values within the conversation. Experiments on MultiWOZ-2.0 cross-domain dialog dataset show that our simple system can obtain similar accuracies compared to the previous more complex methods. By exploiting recent advances in contextual word embeddings, adding a model that explicitly tracks whether a slot value should be carried over to the next turn, and combining our method with a traditional joint state tracking method that relies on closed set vocabulary, we can obtain a joint-goal accuracy of 47.33% on the standard test split, exceeding current state-of-the-art by 11.75%**.

pdf bib
Cross-Corpus Data Augmentation for Acoustic Addressee Detection
Oleg Akhtiamov | Ingo Siegert | Alexey Karpov | Wolfgang Minker

Acoustic addressee detection (AD) is a modern paralinguistic and dialogue challenge that especially arises in voice assistants. In the present study, we distinguish addressees in two settings (a conversation between several people and a spoken dialogue system, and a conversation between several adults and a child) and introduce the first competitive baseline (unweighted average recall equals 0.891) for the Voice Assistant Conversation Corpus that models the first setting. We jointly solve both classification problems, using three models: a linear support vector machine dealing with acoustic functionals and two neural networks utilising raw waveforms alongside with acoustic low-level descriptors. We investigate how different corpora influence each other, applying the mixup approach to data augmentation. We also study the influence of various acoustic context lengths on AD. Two-second speech fragments turn out to be sufficient for reliable AD. Mixup is shown to be beneficial for merging acoustic data (extracted features but not raw waveforms) from different domains that allows us to reach a higher classification performance on human-machine AD and also for training a multipurpose neural network that is capable of solving both human-machine and adult-child AD problems.

pdf bib
A Scalable Method for Quantifying the Role of Pitch in Conversational Turn-Taking
Kornel Laskowski | Marcin Wlodarczak | Mattias Heldner

Pitch has long been held as an important signalling channel when planning and deploying speech in conversation, and myriad studies have been undertaken to determine the extent to which it actually plays this role. Unfortunately, these studies have required considerable human investment in data preparation and analysis, and have therefore often been limited to a handful of specific conversational contexts. The current article proposes a framework which addresses these limitations, by enabling a scalable, quantitative characterization of the role of pitch throughout an entire conversation, requiring only the raw signal and speech activity references. The framework is evaluated on the Switchboard dialogue corpus. Experiments indicate that pitch trajectories of both parties are predictive of their incipient speech activity; that pitch should be expressed on a logarithmic scale and Z-normalized, as well as accompanied by a binary voicing variable; and that only the most recent 400 ms of the pitch trajectory are useful in incipient speech activity prediction.

pdf bib
A Large-Scale User Study of an Alexa Prize Chatbot: Effect of TTS Dynamism on Perceived Quality of Social Dialog
Michelle Cohn | Chun-Yen Chen | Zhou Yu

This study tests the effect of cognitive-emotional expression in an Alexa text-to-speech (TTS) voice on users’ experience with a social dialog system. We systematically introduced emotionally expressive interjections (e.g., “Wow!”) and filler words (e.g., “um”, “mhmm”) in an Amazon Alexa Prize socialbot, Gunrock. We tested whether these TTS manipulations improved users’ ratings of their conversation across thousands of real user interactions (n=5,527). Results showed that interjections and fillers each improved users’ holistic ratings, an improvement that further increased if the system used both manipulations. A separate perception experiment corroborated the findings from the user study, with improved social ratings for conversations including interjections; however, no positive effect was observed for fillers, suggesting that the role of the rater in the conversation—as active participant or external listener—is an important factor in assessing social dialogs.

pdf bib
Influence of Time and Risk on Response Acceptability in a Simple Spoken Dialogue System
Andisheh Partovi | Ingrid Zukerman

We describe a longitudinal user study conducted in the context of a Spoken Dialogue System for a household robot, where we examined the influence of time displacement and situational risk on users’ preferred responses. To this effect, we employed a corpus of spoken requests that asked a robot to fetch or move objects in a room. In the first stage of our study, participants selected among four response types to these requests under two risk conditions: low and high. After some time, the same participants rated several responses to the previous requests — these responses were instantiated from the four response types. Our results show that participants did not rate highly their own response types; moreover, they rated their own response types similarly to different ones. This suggests that, at least in this context, people’s preferences at a particular point in time may not reflect their general attitudes, and that various reasonable response types may be equally acceptable. Our study also reveals that situational risk influences the acceptability of some response types.

pdf bib
Characterizing the Response Space of Questions: a Corpus Study for English and Polish
Jonathan Ginzburg | Zulipiye Yusupujiang | Chuyuan Li | Kexin Ren | Paweł Łupkowski

The main aim of this paper is to provide a characterization of the response space for questions using a taxonomy grounded in a dialogical formal semantics. As a starting point we take the typology for responses in the form of questions provided in (Lupkowski and Ginzburg, 2016). This work develops a wide coverage taxonomy for question/question sequences observable in corpora including the BNC, CHILDES, and BEE, as well as formal modelling of all the postulated classes. Our aim is to extend this work to cover all responses to questions. We present the extended typology of responses to questions based on a corpus studies of BNC, BEE and Maptask with include 506, 262, and 467 question/response pairs respectively. We compare the data for English with data from Polish using the Spokes corpus (205 question/response pairs). We discuss annotation reliability and disagreement analysis. We sketch how each class can be formalized using a dialogical semantics appropriate for dialogue management.

pdf bib
From Explainability to Explanation: Using a Dialogue Setting to Elicit Annotations with Justifications
Nazia Attari | Martin Heckmann | David Schlangen

Despite recent attempts in the field of explainable AI to go beyond black box prediction models, typically already the training data for supervised machine learning is collected in a manner that treats the annotator as a “black box”, the internal workings of which remains unobserved. We present an annotation method where a task is given to a pair of annotators who collaborate on finding the best response. With this we want to shed light on the questions if the collaboration increases the quality of the responses and if this “thinking together” provides useful information in itself, as it at least partially reveals their reasoning steps. Furthermore, we expect that this setting puts the focus on explanation as a linguistic act, vs. explainability as a property of models. In a crowd-sourcing experiment, we investigated three different annotation tasks, each in a collaborative dialogical (two annotators) and monological (one annotator) setting. Our results indicate that our experiment elicits collaboration and that this collaboration increases the response accuracy. We see large differences in the annotators’ behavior depending on the task. Similarly, we also observe that the dialog patterns emerging from the collaboration vary significantly with the task.

pdf bib
Prediction of User Emotion and Dialogue Success Using Audio Spectrograms and Convolutional Neural Networks
Athanasios Lykartsis | Margarita Kotti

In this paper we aim to predict dialogue success and user satisfaction as well as emotion on a turn level. To achieve this, we investigate the use of spectrogram representations, extracted from audio files, in combination with several types of convolutional neural networks. The experiments were performed on the Let’s Go V2 database, comprising 5065 audio files and having labels for subjective and objective dialogue turn success, as well as the emotional state of the user. Results show that by using only audio, it is possible to predict turn success with very high accuracy for all three labels (90%). The best performing input representation were 1s long mel-spectrograms in combination with a CNN with a bottleneck architecture. The resulting system has the potential to be used real-time. Our results significantly surpass the state of the art for dialogue success prediction based only on audio.

pdf bib
Modelling Adaptive Presentations in Human-Robot Interaction using Behaviour Trees
Nils Axelsson | Gabriel Skantze

In dialogue, speakers continuously adapt their speech to accommodate the listener, based on the feedback they receive. In this paper, we explore the modelling of such behaviours in the context of a robot presenting a painting. A Behaviour Tree is used to organise the behaviour on different levels, and allow the robot to adapt its behaviour in real-time; the tree organises engagement, joint attention, turn-taking, feedback and incremental speech processing. An initial implementation of the model is presented, and the system is evaluated in a user study, where the adaptive robot presenter is compared to a non-adaptive version. The adaptive version is found to be more engaging by the users, although no effects are found on the retention of the presented material.

pdf bib
Coached Conversational Preference Elicitation: A Case Study in Understanding Movie Preferences
Filip Radlinski | Krisztian Balog | Bill Byrne | Karthik Krishnamoorthi

Conversational recommendation has recently attracted significant attention. As systems must understand users’ preferences, training them has called for conversational corpora, typically derived from task-oriented conversations. We observe that such corpora often do not reflect how people naturally describe preferences. We present a new approach to obtaining user preferences in dialogue: Coached Conversational Preference Elicitation. It allows collection of natural yet structured conversational preferences. Studying the dialogues in one domain, we present a brief quantitative analysis of how people describe movie preferences at scale. Demonstrating the methodology, we release the CCPE-M dataset to the community with over 500 movie preference dialogues expressing over 10,000 preferences.

pdf bib
A Crowd-based Evaluation of Abuse Response Strategies in Conversational Agents
Amanda Cercas Curry | Verena Rieser

How should conversational agents respond to verbal abuse through the user? To answer this question, we conduct a large-scale crowd-sourced evaluation of abuse response strategies employed by current state-of-the-art systems. Our results show that some strategies, such as “polite refusal”, score highly across the board, while for other strategies demographic factors, such as age, as well as the severity of the preceding abuse influence the user’s perception of which response is appropriate. In addition, we find that most data-driven models lag behind rule-based or commercial systems in terms of their perceived appropriateness.

pdf bib
A Dynamic Strategy Coach for Effective Negotiation
Yiheng Zhou | He He | Alan W Black | Yulia Tsvetkov

Negotiation is a complex activity involving strategic reasoning, persuasion, and psychology. An average person is often far from an expert in negotiation. Our goal is to assist humans to become better negotiators through a machine-in-the-loop approach that combines machine’s advantage at data-driven decision-making and human’s language generation ability. We consider a bargaining scenario where a seller and a buyer negotiate the price of an item for sale through a text-based dialogue. Our negotiation coach monitors messages between them and recommends strategies in real time to the seller to get a better deal (e.g., “reject the proposal and propose a price”, “talk about your personal experience with the product”). The best strategy largely depends on the context (e.g., the current price, the buyer’s attitude). Therefore, we first identify a set of negotiation strategies, then learn to predict the best strategy in a given dialogue context from a set of human-human bargaining dialogues. Evaluation on human-human dialogues shows that our coach increases the profits of the seller by almost 60%.

pdf bib
Investigating Evaluation of Open-Domain Dialogue Systems With Human Generated Multiple References
Prakhar Gupta | Shikib Mehri | Tiancheng Zhao | Amy Pavel | Maxine Eskenazi | Jeffrey Bigham

The aim of this paper is to mitigate the shortcomings of automatic evaluation of open-domain dialog systems through multi-reference evaluation. Existing metrics have been shown to correlate poorly with human judgement, particularly in open-domain dialog. One alternative is to collect human annotations for evaluation, which can be expensive and time consuming. To demonstrate the effectiveness of multi-reference evaluation, we augment the test set of DailyDialog with multiple references. A series of experiments show that the use of multiple references results in improved correlation between several automatic metrics and human judgement for both the quality and the diversity of system output.

pdf bib
User Evaluation of a Multi-dimensional Statistical Dialogue System
Simon Keizer | Ondřej Dušek | Xingkun Liu | Verena Rieser

We present the first complete spoken dialogue system driven by a multiimensional statistical dialogue manager. This framework has been shown to substantially reduce data needs by leveraging domain-independent dimensions, such as social obligations or feedback, which (as we show) can be transferred between domains. In this paper, we conduct a user study and show that the performance of a multi-dimensional system, which can be adapted from a source domain, is equivalent to that of a one-dimensional baseline, which can only be trained from scratch.

pdf bib
Dialogue Act Classification in Team Communication for Robot Assisted Disaster Response
Tatiana Anikina | Ivana Kruijff-Korbayova

We present the results we obtained on the classification of dialogue acts in a corpus of human-human team communication in the domain of robot-assisted disaster response. We annotated dialogue acts according to the ISO 24617-2 standard scheme and carried out experiments using the FastText linear classifier as well as several neural architectures, including feed-forward, recurrent and convolutional neural models with different types of embeddings, context and attention mechanism. The best performance was achieved with a ”Divide & Merge” architecture presented in the paper, using trainable GloVe embeddings and a structured dialogue history. This model learns from the current utterance and the preceding context separately and then combines the two generated representations. Average accuracy of 10-fold cross-validation is 79.8%, F-score 71.8%.

pdf bib
Multi-Task Learning of System Dialogue Act Selection for Supervised Pretraining of Goal-Oriented Dialogue Policies
Sarah McLeod | Ivana Kruijff-Korbayova | Bernd Kiefer

This paper describes the use of Multi-Task Neural Networks (NNs) for system dialogue act selection. These models leverage the representations learned by the Natural Language Understanding (NLU) unit to enable robust initialization/bootstrapping of dialogue policies from medium sized initial data sets. We evaluate the models on two goal-oriented dialogue corpora in the travel booking domain. Results show the proposed models improve over models trained without knowledge of NLU tasks.

pdf bib
B. Rex: a dialogue agent for book recommendations
Mitchell Abrams | Luke Gessler | Matthew Marge

We present B. Rex, a dialogue agent for book recommendations. B. Rex aims to exploit the cognitive ease of natural dialogue and the excitement of a whimsical persona in order to engage users who might not enjoy using more common interfaces for finding new books. B. Rex succeeds in making book recommendations with good quality based on only information revealed by the user in the dialogue.

pdf bib
SpaceRefNet: a neural approach to spatial reference resolution in a real city environment
Dmytro Kalpakchi | Johan Boye

Adding interactive capabilities to pedestrian wayfinding systems in the form of spoken dialogue will make them more natural to humans. Such an interactive wayfinding system needs to continuously understand and interpret pedestrian’s utterances referring to the spatial context. Achieving this requires the system to identify exophoric referring expressions in the utterances, and link these expressions to the geographic entities in the vicinity. This exophoric spatial reference resolution problem is difficult, as there are often several dozens of candidate referents. We present a neural network-based approach for identifying pedestrian’s references (using a network called RefNet) and resolving them to appropriate geographic objects (using a network called SpaceRefNet). Both methods show promising results beating the respective baselines and earlier reported results in the literature.

pdf bib
Which aspects of discourse relations are hard to learn? Primitive decomposition for discourse relation classification
Charlotte Roze | Chloé Braud | Philippe Muller

Discourse relation classification has proven to be a hard task, with rather low performance on several corpora that notably differ on the relation set they use. We propose to decompose the task into smaller, mostly binary tasks corresponding to various primitive concepts encoded into the discourse relation definitions. More precisely, we translate the discourse relations into a set of values for attributes based on distinctions used in the mappings between discourse frameworks proposed by Sanders et al. (2018). This arguably allows for a more robust representation of discourse relations, and enables us to address usually ignored aspects of discourse relation prediction, namely multiple labels and underspecified annotations. We show experimentally which of the conceptual primitives are harder to learn from the Penn Discourse Treebank English corpus, and propose a correspondence to predict the original labels, with preliminary empirical comparisons with a direct model.

pdf bib
Discourse Relation Prediction: Revisiting Word Pairs with Convolutional Networks
Siddharth Varia | Christopher Hidey | Tuhin Chakrabarty

Word pairs across argument spans have been shown to be effective for predicting the discourse relation between them. We propose an approach to distill knowledge from word pairs for discourse relation classification with convolutional neural networks by incorporating joint learning of implicit and explicit relations. Our novel approach of representing the input as word pairs achieves state-of-the-art results on four-way classification of both implicit and explicit relations as well as one of the binary classification tasks. For explicit relation prediction, we achieve around 20% error reduction on the four-way task. At the same time, compared to a two-layered Bi-LSTM-CRF model, our model is able to achieve these results with half the number of learnable parameters and approximately half the amount of training time.