Other Workshops and Events (2021)



bib (full) Proceedings of the Second Workshop on Domain Adaptation for NLP

pdf bib
Proceedings of the Second Workshop on Domain Adaptation for NLP
Eyal Ben-David | Shay Cohen | Ryan McDonald | Barbara Plank | Roi Reichart | Guy Rotman | Yftah Ziser

pdf bib
Multidomain Pretrained Language Models for Green NLP
Antonis Maronikolakis | Hinrich Schütze

When tackling a task in a given domain, it has been shown that adapting a model to the domain using raw text data before training on the supervised task improves performance versus solely training on the task. The downside is that a lot of domain data is required and if we want to tackle tasks in n domains, we require n models each adapted on domain data before task learning. Storing and using these models separately can be prohibitive for low-end devices. In this paper we show that domain adaptation can be generalised to cover multiple domains. Specifically, a single model can be trained across various domains at the same time with minimal drop in performance, even when we use less data and resources. Thus, instead of training multiple models, we can train a single multidomain model saving on computational resources and training time.

pdf bib
Pseudo-Label Guided Unsupervised Domain Adaptation of Contextual Embeddings
Tianyu Chen | Shaohan Huang | Furu Wei | Jianxin Li

Contextual embedding models such as BERT can be easily fine-tuned on labeled samples to create a state-of-the-art model for many downstream tasks. However, the fine-tuned BERT model suffers considerably from unlabeled data when applied to a different domain. In unsupervised domain adaptation, we aim to train a model that works well on a target domain when provided with labeled source samples and unlabeled target samples. In this paper, we propose a pseudo-label guided method for unsupervised domain adaptation. Two models are fine-tuned on labeled source samples as pseudo labeling models. To learn representations for the target domain, one of those models is adapted by masked language modeling from the target domain. Then those models are used to assign pseudo-labels to target samples. We train the final model with those samples. We evaluate our method on named entity segmentation and sentiment analysis tasks. These experiments show that our approach outperforms baseline methods.

pdf bib
Conditional Adversarial Networks for Multi-Domain Text Classification
Yuan Wu | Diana Inkpen | Ahmed El-Roby

In this paper, we propose conditional adversarial networks (CANs), a framework that explores the relationship between the shared features and the label predictions to impose stronger discriminability to the learned features, for multi-domain text classification (MDTC). The proposed CAN introduces a conditional domain discriminator to model the domain variance in both the shared feature representations and the class-aware information simultaneously, and adopts entropy conditioning to guarantee the transferability of the shared features. We provide theoretical analysis for the CAN framework, showing that CAN’s objective is equivalent to minimizing the total divergence among multiple joint distributions of shared features and label predictions. Therefore, CAN is a theoretically sound adversarial network that discriminates over multiple distributions. Evaluation results on two MDTC benchmarks show that CAN outperforms prior methods. Further experiments demonstrate that CAN has a good ability to generalize learned knowledge to unseen domains.

pdf bib
The impact of domain-specific representations on BERT-based multi-domain spoken language understanding
Judith Gaspers | Quynh Do | Tobias Röding | Melanie Bradford

This paper provides the first experimental study on the impact of using domain-specific representations on a BERT-based multi-task spoken language understanding (SLU) model for multi-domain applications. Our results on a real-world dataset covering three languages indicate that by using domain-specific representations learned adversarially, model performance can be improved across all of the three SLU subtasks domain classification, intent classification and slot filling. Gains are particularly large for domains with limited training data.

pdf bib
Bridging the gap between supervised classification and unsupervised topic modelling for social-media assisted crisis management
Mikael Brunila | Rosie Zhao | Andrei Mircea | Sam Lumley | Renee Sieber

Social media such as Twitter provide valuable information to crisis managers and affected people during natural disasters. Machine learning can help structure and extract information from the large volume of messages shared during a crisis; however, the constantly evolving nature of crises makes effective domain adaptation essential. Supervised classification is limited by unchangeable class labels that may not be relevant to new events, and unsupervised topic modelling by insufficient prior knowledge. In this paper, we bridge the gap between the two and show that BERT embeddings finetuned on crisis-related tweet classification can effectively be used to adapt to a new crisis, discovering novel topics while preserving relevant classes from supervised training, and leveraging bidirectional self-attention to extract topic keywords. We create a dataset of tweets from a snowstorm to evaluate our method’s transferability to new crises, and find that it outperforms traditional topic models in both automatic, and human evaluations grounded in the needs of crisis managers. More broadly, our method can be used for textual domain adaptation where the latent classes are unknown but overlap with known classes from other domains.

pdf bib
Challenges in Annotating and Parsing Spoken, Code-switched, Frisian-Dutch Data
Anouck Braggaar | Rob van der Goot

While high performance have been obtained for high-resource languages, performance on low-resource languages lags behind. In this paper we focus on the parsing of the low-resource language Frisian. We use a sample of code-switched, spontaneously spoken data, which proves to be a challenging setup. We propose to train a parser specifically tailored towards the target domain, by selecting instances from multiple treebanks. Specifically, we use Latent Dirichlet Allocation (LDA), with word and character N-grams. We use a deep biaffine parser initialized with mBERT. The best single source treebank (nl_alpino) resulted in an LAS of 54.7 whereas our data selection outperformed the single best transfer treebank and led to 55.6 LAS on the test data. Additional experiments consisted of removing diacritics from our Frisian data, creating more similar training data by cropping sentences and running our best model using XLM-R. These experiments did not lead to a better performance.

pdf bib
Genres, Parsers, and BERT: The Interaction Between Parsers and BERT Models in Cross-Genre Constituency Parsing in English and Swedish
Daniel Dakota

Genre and domain are often used interchangeably, but are two different properties of a text. Successful parser adaptation requires both cross-domain and cross-genre sensitivity (Rehbein and Bildhauer, 2017). While the impact domain differences have on parser performance degradation is more easily measurable in respect to lexical differences, impact of genre differences can be more nuanced. With the predominance of pre-trained language models (LMs; e.g. BERT (Devlin et al., 2019)), there are now additional complexities in developing cross-genre sensitive models due to the infusion of linguistic characteristics derived from, usually, a third genre. We perform a systematic set of experiments using two neural constituency parsers to examine how different parsers behave in combination with different BERT models with varying source and target genres in English and Swedish. We find that there is extensive difficulty in predicting the best source due to the complex interactions between genres, parsers, and LMs. Additionally, the influence of the data used to derive the underlying BERT model heavily influences how best to create more robust and effective cross-genre parsing models.

pdf bib
Cross-Lingual Transfer with MAML on Trees
Jezabel Garcia | Federica Freddi | Jamie McGowan | Tim Nieradzik | Feng-Ting Liao | Ye Tian | Da-shan Shiu | Alberto Bernacchia

In meta-learning, the knowledge learned from previous tasks is transferred to new ones, but this transfer only works if tasks are related. Sharing information between unrelated tasks might hurt performance, and it is unclear how to transfer knowledge across tasks that have a hierarchical structure. Our research extends a meta-learning model, MAML, by exploiting hierarchical task relationships. Our algorithm, TreeMAML, adapts the model to each task with a few gradient steps, but the adaptation follows the hierarchical tree structure: in each step, gradients are pooled across tasks clusters and subsequent steps follow down the tree. We also implement a clustering algorithm that generates the tasks tree without previous knowledge of the task structure, allowing us to make use of implicit relationships between the tasks. We show that TreeMAML successfully trains natural language processing models for cross-lingual Natural Language Inference by taking advantage of the language phylogenetic tree. This result is useful since most languages in the world are under-resourced and the improvement on cross-lingual transfer allows the internationalization of NLP models.

pdf bib
Addressing Zero-Resource Domains Using Document-Level Context in Neural Machine Translation
Dario Stojanovski | Alexander Fraser

Achieving satisfying performance in machine translation on domains for which there is no training data is challenging. Traditional supervised domain adaptation is not suitable for addressing such zero-resource domains because it relies on in-domain parallel data. We show that when in-domain parallel data is not available, access to document-level context enables better capturing of domain generalities compared to only having access to a single sentence. Having access to more information provides a more reliable domain estimation. We present two document-level Transformer models which are capable of using large context sizes and we compare these models against strong Transformer baselines. We obtain improvements for the two zero-resource domains we study. We additionally provide an analysis where we vary the amount of context and look at the case where in-domain data is available.

pdf bib
MultiReQA: A Cross-Domain Evaluation forRetrieval Question Answering Models
Mandy Guo | Yinfei Yang | Daniel Cer | Qinlan Shen | Noah Constant

Retrieval question answering (ReQA) is the task of retrieving a sentence-level answer to a question from an open corpus (Ahmad et al.,2019).This dataset paper presents MultiReQA, a new multi-domain ReQA evaluation suite composed of eight retrieval QA tasks drawn from publicly available QA datasets. We explore systematic retrieval based evaluation and transfer learning across domains over these datasets using a number of strong base-lines including two supervised neural models, based on fine-tuning BERT and USE-QA models respectively, as well as a surprisingly effective information retrieval baseline, BM25. Five of these tasks contain both training and test data, while three contain test data only. Performing cross training on the five tasks with training data shows that while a general model covering all domains is achievable, the best performance is often obtained by training exclusively on in-domain data.

pdf bib
Domain adaptation in practice: Lessons from a real-world information extraction pipeline
Timothy Miller | Egoitz Laparra | Steven Bethard

Advances in transfer learning and domain adaptation have raised hopes that once-challenging NLP tasks are ready to be put to use for sophisticated information extraction needs. In this work, we describe an effort to do just that – combining state-of-the-art neural methods for negation detection, document time relation extraction, and aspectual link prediction, with the eventual goal of extracting drug timelines from electronic health record text. We train on the THYME colon cancer corpus and test on both the THYME brain cancer corpus and an internal corpus, and show that performance of the combined systems is unacceptable despite good performance of individual systems. Although domain adaptation shows improvements on each individual system, the model selection problem is a barrier to improving overall pipeline performance.

pdf bib
BERTologiCoMix: How does Code-Mixing interact with Multilingual BERT?
Sebastin Santy | Anirudh Srinivasan | Monojit Choudhury

Models such as mBERT and XLMR have shown success in solving Code-Mixed NLP tasks even though they were not exposed to such text during pretraining. Code-Mixed NLP models have relied on using synthetically generated data along with naturally occurring data to improve their performance. Finetuning mBERT on such data improves it’s code-mixed performance, but the benefits of using the different types of Code-Mixed data aren’t clear. In this paper, we study the impact of finetuning with different types of code-mixed data and outline the changes that occur to the model during such finetuning. Our findings suggest that using naturally occurring code-mixed data brings in the best performance improvement after finetuning and that finetuning with any type of code-mixed text improves the responsivity of it’s attention heads to code-mixed text inputs.

pdf bib
Locality Preserving Loss: Neighbors that Live together, Align together
Ashwinkumar Ganesan | Francis Ferraro | Tim Oates

We present a locality preserving loss (LPL) that improves the alignment between vector space embeddings while separating uncorrelated representations. Given two pretrained embedding manifolds, LPL optimizes a model to project an embedding and maintain its local neighborhood while aligning one manifold to another. This reduces the overall size of the dataset required to align the two in tasks such as crosslingual word alignment. We show that the LPL-based alignment between input vector spaces acts as a regularizer, leading to better and consistent accuracy than the baseline, especially when the size of the training set is small. We demonstrate the effectiveness of LPL-optimized alignment on semantic text similarity (STS), natural language inference (SNLI), multi-genre language inference (MNLI) and cross-lingual word alignment (CLA) showing consistent improvements, finding up to 16% improvement over our baseline in lower resource settings.

pdf bib
On the Hidden Negative Transfer in Sequential Transfer Learning for Domain Adaptation from News to Tweets
Sara Meftah | Nasredine Semmar | Youssef Tamaazousti | Hassane Essafi | Fatiha Sadat

Transfer Learning has been shown to be a powerful tool for Natural Language Processing (NLP) and has outperformed the standard supervised learning paradigm, as it takes benefit from the pre-learned knowledge. Nevertheless, when transfer is performed between less related domains, it brings a negative transfer, i.e. hurts the transfer performance. In this research, we shed light on the hidden negative transfer occurring when transferring from the News domain to the Tweets domain, through quantitative and qualitative analysis. Our experiments on three NLP taks: Part-Of-Speech tagging, Chunking and Named Entity recognition, reveal interesting insights.

pdf bib
Trajectory-Based Meta-Learning for Out-Of-Vocabulary Word Embedding Learning
Gordon Buck | Andreas Vlachos

Word embedding learning methods require a large number of occurrences of a word to accurately learn its embedding. However, out-of-vocabulary (OOV) words which do not appear in the training corpus emerge frequently in the smaller downstream data. Recent work formulated OOV embedding learning as a few-shot regression problem and demonstrated that meta-learning can improve results obtained. However, the algorithm used, model-agnostic meta-learning (MAML) is known to be unstable and perform worse when a large number of gradient steps are used for parameter updates. In this work, we propose the use of Leap, a meta-learning algorithm which leverages the entire trajectory of the learning process instead of just the beginning and the end points, and thus ameliorates these two issues. In our experiments on a benchmark OOV embedding learning dataset and in an extrinsic evaluation, Leap performs comparably or better than MAML. We go on to examine which contexts are most beneficial to learn an OOV embedding from, and propose that the choice of contexts may matter more than the meta-learning employed.

pdf bib
Dependency Parsing Evaluation for Low-resource Spontaneous Speech
Zoey Liu | Emily Prud’hommeaux

How well can a state-of-the-art parsing system, developed for the written domain, perform when applied to spontaneous speech data involving different interlocutors? This study addresses this question in a low-resource setting using child-parent conversations from the CHILDES databse. Specifically, we focus on dependency parsing evaluation for utterances of one specific child (18 - 27 months) and her parents. We first present a semi-automatic adaption of the dependency annotation scheme in CHILDES to that of the Universal Dependencies project, an annotation style that is more commonly applied in dependency parsing. Our evaluation demonstrates that an outof-domain biaffine parser trained only on written texts performs well with parent speech. There is, however, much room for improvement on child utterances, particularly at 18 and 21 months, due to cases of omission and repetition that are prevalent in child speech. By contrast, parsers trained or fine-tuned with in-domain spoken data on a much smaller scale can achieve comparable results for parent speech and improve the weak parsing performance for child speech at these earlier ages

pdf bib
An Empirical Study of Compound PCFGs
Yanpeng Zhao | Ivan Titov

Compound probabilistic context-free grammars (C-PCFGs) have recently established a new state of the art for phrase-structure grammar induction. However, due to the high time-complexity of chart-based representation and inference, it is difficult to investigate them comprehensively. In this work, we rely on a fast implementation of C-PCFGs to conduct evaluation complementary to that of (CITATION). We highlight three key findings: (1) C-PCFGs are data-efficient, (2) C-PCFGs make the best use of global sentence-level information in preterminal rule probabilities, and (3) the best configurations of C-PCFGs on English do not always generalize to morphology-rich languages.

pdf bib
User Factor Adaptation for User Embedding via Multitask Learning
Xiaolei Huang | Michael J. Paul | Franck Dernoncourt | Robin Burke | Mark Dredze

Language varies across users and their interested fields in social media data: words authored by a user across his/her interests may have different meanings (e.g., cool) or sentiments (e.g., fast). However, most of the existing methods to train user embeddings ignore the variations across user interests, such as product and movie categories (e.g., drama vs. action). In this study, we treat the user interest as domains and empirically examine how the user language can vary across the user factor in three English social media datasets. We then propose a user embedding model to account for the language variability of user interests via a multitask learning framework. The model learns user language and its variations without human supervision. While existing work mainly evaluated the user embedding by extrinsic tasks, we propose an intrinsic evaluation via clustering and evaluate user embeddings by an extrinsic task, text classification. The experiments on the three English-language social media datasets show that our proposed approach can generally outperform baselines via adapting the user factor.

pdf bib
On the Effectiveness of Dataset Embeddings in Mono-lingual,Multi-lingual and Zero-shot Conditions
Rob van der Goot | Ahmet Üstün | Barbara Plank

Recent complementary strands of research have shown that leveraging information on the data source through encoding their properties into embeddings can lead to performance increase when training a single model on heterogeneous data sources. However, it remains unclear in which situations these dataset embeddings are most effective, because they are used in a large variety of settings, languages and tasks. Furthermore, it is usually assumed that gold information on the data source is available, and that the test data is from a distribution seen during training. In this work, we compare the effect of dataset embeddings in mono-lingual settings, multi-lingual settings, and with predicted data source label in a zero-shot setting. We evaluate on three morphosyntactic tasks: morphological tagging, lemmatization, and dependency parsing, and use 104 datasets, 66 languages, and two different dataset grouping strategies. Performance increases are highest when the datasets are of the same language, and we know from which distribution the test-instance is drawn. In contrast, for setups where the data is from an unseen distribution, performance increase vanishes.

pdf bib
Effective Distant Supervision for Temporal Relation Extraction
Xinyu Zhao | Shih-Ting Lin | Greg Durrett

A principal barrier to training temporal relation extraction models in new domains is the lack of varied, high quality examples and the challenge of collecting more. We present a method of automatically collecting distantly-supervised examples of temporal relations. We scrape and automatically label event pairs where the temporal relations are made explicit in text, then mask out those explicit cues, forcing a model trained on this data to learn other signals. We demonstrate that a pre-trained Transformer model is able to transfer from the weakly labeled examples to human-annotated benchmarks in both zero-shot and few-shot settings, and that the masking scheme is important in improving generalization.

pdf bib
Zero-Shot Cross-Lingual Dependency Parsing through Contextual Embedding Transformation
Haoran Xu | Philipp Koehn

Linear embedding transformation has been shown to be effective for zero-shot cross-lingual transfer tasks and achieve surprisingly promising results. However, cross-lingual embedding space mapping is usually studied in static word-level embeddings, where a space transformation is derived by aligning representations of translation pairs that are referred from dictionaries. We move further from this line and investigate a contextual embedding alignment approach which is sense-level and dictionary-free. To enhance the quality of the mapping, we also provide a deep view of properties of contextual embeddings, i.e., the anisotropy problem and its solution. Experiments on zero-shot dependency parsing through the concept-shared space built by our embedding transformation substantially outperform state-of-the-art methods using multilingual embeddings.

pdf bib
Gradual Fine-Tuning for Low-Resource Domain Adaptation
Haoran Xu | Seth Ebner | Mahsa Yarmohammadi | Aaron Steven White | Benjamin Van Durme | Kenton Murray

Fine-tuning is known to improve NLP models by adapting an initial model trained on more plentiful but less domain-salient examples to data in a target domain. Such domain adaptation is typically done using one stage of fine-tuning. We demonstrate that gradually fine-tuning in a multi-step process can yield substantial further gains and can be applied without modifying the model or learning objective.

pdf bib
Analyzing the Domain Robustness of Pretrained Language Models, Layer by Layer
Abhinav Ramesh Kashyap | Laiba Mehnaz | Bhavitvya Malik | Abdul Waheed | Devamanyu Hazarika | Min-Yen Kan | Rajiv Ratn Shah

The robustness of pretrained language models(PLMs) is generally measured using performance drops on two or more domains. However, we do not yet understand the inherent robustness achieved by contributions from different layers of a PLM. We systematically analyze the robustness of these representations layer by layer from two perspectives. First, we measure the robustness of representations by using domain divergence between two domains. We find that i) Domain variance increases from the lower to the upper layers for vanilla PLMs; ii) Models continuously pretrained on domain-specific data (DAPT)(Gururangan et al., 2020) exhibit more variance than their pretrained PLM counterparts; and that iii) Distilled models (e.g., DistilBERT) also show greater domain variance. Second, we investigate the robustness of representations by analyzing the encoded syntactic and semantic information using diagnostic probes. We find that similar layers have similar amounts of linguistic information for data from an unseen domain.

pdf bib
Few-Shot Learning of an Interleaved Text Summarization Model by Pretraining with Synthetic Data
Sanjeev Kumar Karn | Francine Chen | Yan-Ying Chen | Ulli Waltinger | Hinrich Schütze

Interleaved texts, where posts belonging to different threads occur in a sequence, commonly occur in online chat posts, so that it can be time-consuming to quickly obtain an overview of the discussions. Existing systems first disentangle the posts by threads and then extract summaries from those threads. A major issue with such systems is error propagation from the disentanglement component. While end-to-end trainable summarization system could obviate explicit disentanglement, such systems require a large amount of labeled data. To address this, we propose to pretrain an end-to-end trainable hierarchical encoder-decoder system using synthetic interleaved texts. We show that by fine-tuning on a real-world meeting dataset (AMI), such a system out-performs a traditional two-step system by 22%. We also compare against transformer models and observed that pretraining with synthetic data both the encoder and decoder outperforms the BertSumExtAbs transformer model which pretrains only the encoder on a large dataset.

pdf bib
Semantic Parsing of Brief and Multi-Intent Natural Language Utterances
Logan Lebanoff | Charles Newton | Victor Hung | Beth Atkinson | John Killilea | Fei Liu

Many military communication domains involve rapidly conveying situation awareness with few words. Converting natural language utterances to logical forms in these domains is challenging, as these utterances are brief and contain multiple intents. In this paper, we present a first effort toward building a weakly-supervised semantic parser to transform brief, multi-intent natural utterances into logical forms. Our findings suggest a new “projection and reduction” method that iteratively performs projection from natural to canonical utterances followed by reduction of natural utterances is the most effective. We conduct extensive experiments on two military and a general-domain dataset and provide a new baseline for future research toward accurate parsing of multi-intent utterances.

pdf bib
Domain Adaptation for NMT via Filtered Iterative Back-Translation
Surabhi Kumari | Nikhil Jaiswal | Mayur Patidar | Manasi Patwardhan | Shirish Karande | Puneet Agarwal | Lovekesh Vig

Domain-specific Neural Machine Translation (NMT) model can provide improved performance, however, it is difficult to always access a domain-specific parallel corpus. Iterative Back-Translation can be used for fine-tuning an NMT model for a domain even if only a monolingual domain corpus is available. The quality of synthetic parallel corpora in terms of closeness to in-domain sentences can play an important role in the performance of the translation model. Recent works have shown that filtering at different stages of the back translation and weighting the sentences can provide state-of-the-art performance. In comparison, in this work, we observe that a simpler filtering approach based on a domain classifier, applied only to the pseudo-training data can consistently perform better, providing performance gains of 1.40, 1.82 and 0.76 in terms of BLEU score for Medical, Law and IT in one direction, and 1.28, 1.60 and 1.60 in the other direction in low resource scenario over competitive baselines. In the high resource scenario, our approach is at par with competitive baselines.


pdf (full)
bib (full)
Proceedings of the Second Workshop on Advances in Language and Vision Research

pdf bib
Proceedings of the Second Workshop on Advances in Language and Vision Research
Xin | Ronghang Hu | Drew Hudson | Tsu-Jui Fu | Marcus Rohrbach | Daniel Fried

pdf bib
Feature-level Incongruence Reduction for Multimodal Translation
Zhifeng Li | Yu Hong | Yuchen Pan | Jian Tang | Jianmin Yao | Guodong Zhou

Caption translation aims to translate image annotations (captions for short). Recently, Multimodal Neural Machine Translation (MNMT) has been explored as the essential solution. Besides of linguistic features in captions, MNMT allows visual(image) features to be used. The integration of multimodal features reinforces the semantic representation and considerably improves translation performance. However, MNMT suffers from the incongruence between visual and linguistic features. To overcome the problem, we propose to extend MNMT architecture with a harmonization network, which harmonizes multimodal features(linguistic and visual features)by unidirectional modal space conversion. It enables multimodal translation to be carried out in a seemingly monomodal translation pipeline. We experiment on the golden Multi30k-16 and 17. Experimental results show that, compared to the baseline,the proposed method yields the improvements of 2.2% BLEU for the scenario of translating English captions into German (En→De) at best,7.6% for the case of English-to-French translation(En→Fr) and 1.5% for English-to-Czech(En→Cz). The utilization of harmonization network leads to the competitive performance to the-state-of-the-art.

pdf bib
Error Causal inference for Multi-Fusion models
Chengxi Li | Brent Harrison

In this paper, we propose an error causal inference method that could be used for finding dominant features for a faulty instance under a well-trained multi-modality input model, which could apply to any testing instance. We evaluate our method using a well-trained multi-modalities stylish caption generation model and find those causal inferences that could provide us the insights for next step optimization.

pdf bib
Leveraging Partial Dependency Trees to Control Image Captions
Wenjie Zhong | Yusuke Miyao

Controlling the generation of image captions attracts lots of attention recently. In this paper, we propose a framework leveraging partial syntactic dependency trees as control signals to make image captions include specified words and their syntactic structures. To achieve this purpose, we propose a Syntactic Dependency Structure Aware Model (SDSAM), which explicitly learns to generate the syntactic structures of image captions to include given partial dependency trees. In addition, we come up with a metric to evaluate how many specified words and their syntactic dependencies are included in generated captions. We carry out experiments on two standard datasets: Microsoft COCO and Flickr30k. Empirical results show that image captions generated by our model are effectively controlled in terms of specified words and their syntactic structures. The code is available on GitHub.

pdf bib
Grounding Plural Phrases: Countering Evaluation Biases by Individuation
Julia Suter | Letitia Parcalabescu | Anette Frank

Phrase grounding (PG) is a multimodal task that grounds language in images. PG systems are evaluated on well-known benchmarks, using Intersection over Union (IoU) as evaluation metric. This work highlights a disconcerting bias in the evaluation of grounded plural phrases, which arises from representing sets of objects as a union box covering all component bounding boxes, in conjunction with the IoU metric. We detect, analyze and quantify an evaluation bias in the grounding of plural phrases and define a novel metric, c-IoU, based on a union box’s component boxes. We experimentally show that our new metric greatly alleviates this bias and recommend using it for fairer evaluation of plural phrases in PG tasks.

pdf bib
PanGEA: The Panoramic Graph Environment Annotation Toolkit
Alexander Ku | Peter Anderson | Jordi Pont Tuset | Jason Baldridge

PanGEA, the Panoramic Graph Environment Annotation toolkit, is a lightweight toolkit for collecting speech and text annotations in photo-realistic 3D environments. PanGEA immerses annotators in a web-based simulation and allows them to move around easily as they speak and/or listen. It includes database and cloud storage integration, plus utilities for automatically aligning recorded speech with manual transcriptions and the virtual pose of the annotators. Out of the box, PanGEA supports two tasks – collecting navigation instructions and navigation instruction following – and it could be easily adapted for annotating walking tours, finding and labeling landmarks or objects, and similar tasks. We share best practices learned from using PanGEA in a 20,000 hour annotation effort to collect the Room-Across-Room dataset. We hope that our open-source annotation toolkit and insights will both expedite future data collection efforts and spur innovation on the kinds of grounded language tasks such environments can support.

pdf bib
Learning to Learn Semantic Factors in Heterogeneous Image Classification
Boyue Fan | Zhenting Liu

Few-shot learning is to recognize novel classes with a few labeled samples per class. Although numerous meta-learning methods have made significant progress, they struggle to directly address the heterogeneity of training and evaluating task distributions, resulting in the domain shift problem when transitioning to new tasks with disjoint spaces. In this paper, we propose a novel method to deal with the heterogeneity. Specifically, by simulating class-difference domain shift during the meta-train phase, a bilevel optimization procedure is applied to learn a transferable representation space that can rapidly adapt to heterogeneous tasks. Experiments demonstrate the effectiveness of our proposed method.

pdf bib
Reference and coreference in situated dialogue
Sharid Loáiciga | Simon Dobnik | David Schlangen

In recent years several corpora have been developed for vision and language tasks. We argue that there is still significant room for corpora that increase the complexity of both visual and linguistic domains and which capture different varieties of perceptual and conversational contexts. Working with two corpora approaching this goal, we present a linguistic perspective on some of the challenges in creating and extending resources combining language and vision while preserving continuity with the existing best practices in the area of coreference annotation.


pdf (full)
bib (full)
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

pdf bib
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas
Manuel Mager | Arturo Oncevay | Annette Rios | Ivan Vladimir Meza Ruiz | Alexis Palmer | Graham Neubig | Katharina Kann

pdf bib
qxoRef 1.0: A coreference corpus and mention-pair baseline for coreference resolution in Conchucos Quechua
Elizabeth Pankratz

This paper introduces qxoRef 1.0, the first coreference corpus to be developed for a Quechuan language, and describes a baseline mention-pair coreference resolution system developed for this corpus. The evaluation of this system will illustrate that earlier steps in the NLP pipeline, in particular syntactic parsing, should be in place before a complex task like coreference resolution can truly succeed. qxoRef 1.0 is freely available under a CC-BY-NC-SA 4.0 license.

pdf bib
A corpus of K’iche’ annotated for morphosyntactic structure
Francis Tyers | Robert Henderson

This article describes a collection of sentences in K’iche’ annotated for morphology and syntax. K’iche’ is a language in the Mayan language family, spoken in Guatemala. The annotation is done according to the guidelines of the Universal Dependencies project. The corpus consists of a total of 1,433 sentences containing approximately 10,000 tokens and is released under a free/open-source licence. We present a comparison of parsing systems for K’iche’ using this corpus and describe how it can be used for mining linguistic examples.

pdf bib
Investigating variation in written forms of Nahuatl using character-based language models
Robert Pugh | Francis Tyers

We describe experiments with character-based language modeling for written variants of Nahuatl. Using a standard LSTM model and publicly available Bible translations, we explore how character language models can be applied to the tasks of estimating mutual intelligibility, identifying genetic similarity, and distinguishing written variants. We demonstrate that these simple language models are able to capture similarities and differences that have been described in the linguistic literature.

pdf bib
Apurinã Universal Dependencies Treebank
Jack Rueter | Marília Fernanda Pereira de Freitas | Sidney Da Silva Facundes | Mika Hämäläinen | Niko Partanen

This paper presents and discusses the first Universal Dependencies treebank for the Apurinã language. The treebank contains 76 fully annotated sentences, applies 14 parts-of-speech, as well as seven augmented or new features — some of which are unique to Apurinã. The construction of the treebank has also served as an opportunity to develop finite-state description of the language and facilitate the transfer of open-source infrastructure possibilities to an endangered language of the Amazon. The source materials used in the initial treebank represent fieldwork practices where not all tokens of all sentences are equally annotated. For this reason, establishing regular annotation practices for the entire Apurinã treebank is an ongoing project.

pdf bib
Automatic Interlinear Glossing for Otomi language
Diego Barriga Martínez | Victor Mijangos | Ximena Gutierrez-Vasques

In linguistics, interlinear glossing is an essential procedure for analyzing the morphology of languages. This type of annotation is useful for language documentation, and it can also provide valuable data for NLP applications. We perform automatic glossing for Otomi, an under-resourced language. Our work also comprises the pre-processing and annotation of the corpus. We implement different sequential labelers. CRF models represented an efficient and good solution for our task. Two main observations emerged from our work: 1) models with a higher number of parameters (RNNs) performed worse in our low-resource scenario; and 2) the information encoded in the CRF feature function plays an important role in the prediction of labels; however, even in cases where POS tags are not available it is still possible to achieve competitive results.

pdf bib
A survey of part-of-speech tagging approaches applied to K’iche’
Francis Tyers | Nick Howell

We study the performance of several popular neural part-of-speech taggers from the Universal Dependencies ecosystem on Mayan languages using a small corpus of 1435 annotated K’iche’ sentences consisting of approximately 10,000 tokens, with encouraging results: F1 scores 93%+ on lemmatisation, part-of-speech and morphological feature assignment. The high performance motivates a cross-language part-of-speech tagging study, where K’iche’-trained models are evaluated on two other Mayan languages, Kaqchikel and Uspanteko: performance on Kaqchikel is good, 63-85%, and on Uspanteko modest, 60-71%. Supporting experiments lead us to conclude the relative diversity of morphological features as a plausible explanation for the limiting factors in cross-language tagging performance, providing some direction for future sentence annotation and collection work to support these and other Mayan languages.

pdf bib
Highland Puebla Nahuatl Speech Translation Corpus for Endangered Language Documentation
Jiatong Shi | Jonathan D. Amith | Xuankai Chang | Siddharth Dalmia | Brian Yan | Shinji Watanabe

Documentation of endangered languages (ELs) has become increasingly urgent as thousands of languages are on the verge of disappearing by the end of the 21st century. One challenging aspect of documentation is to develop machine learning tools to automate the processing of EL audio via automatic speech recognition (ASR), machine translation (MT), or speech translation (ST). This paper presents an open-access speech translation corpus of Highland Puebla Nahuatl (glottocode high1278), an EL spoken in central Mexico. It then addresses machine learning contributions to endangered language documentation and argues for the importance of speech translation as a key element in the documentation process. In our experiments, we observed that state-of-the-art end-to-end ST models could outperform a cascaded ST (ASR > MT) pipeline when translating endangered language documentation materials.

pdf bib
End-to-End Automatic Speech Recognition: Its Impact on the Workflowin Documenting Yoloxóchitl Mixtec
Jonathan D. Amith | Jiatong Shi | Rey Castillo García

This paper describes three open access Yoloxóchitl Mixtec corpora and presents the results and implications of end-to-end automatic speech recognition for endangered language documentation. Two issues are addressed. First, the advantage for ASR accuracy of targeting informational (BPE) units in addition to, or in substitution of, linguistic units (word, morpheme, morae) and then using ROVER for system combination. BPE units consistently outperform linguistic units although the best results are obtained by system combination of different BPE targets. Second, a case is made that for endangered language documentation, ASR contributions should be evaluated according to extrinsic criteria (e.g., positive impact on downstream tasks) and not simply intrinsic metrics (e.g., CER and WER). The extrinsic metric chosen is the level of reduction in the human effort needed to produce high-quality transcriptions for permanent archiving.

pdf bib
A finite-state morphological analyser for Paraguayan Guaraní
Anastasia Kuznetsova | Francis Tyers

This article describes the development of morphological analyser for Paraguayan Guaraní, agglutinative indigenous language spoken by nearly 6 million people in South America. The implementation of our analyser uses HFST (Helsiki Finite State Technology) and two-level transducer that covers morphotactics and phonological processes occurring in Guaraní. We assess the efficacy of the approach on publicly available Wikipedia and Bible corpora and the naive coverage of analyser reaches 86% on Wikipedia and 91% on Bible corpora.

pdf bib
Morphological Segmentation for Seneca
Zoey Liu | Robert Jimerson | Emily Prud’hommeaux

This study takes up the task of low-resource morphological segmentation for Seneca, a critically endangered and morphologically complex Native American language primarily spoken in what is now New York State and Ontario. The labeled data in our experiments comes from two sources: one digitized from a publicly available grammar book and the other collected from informal sources. We treat these two sources as distinct domains and investigate different evaluation designs for model selection. The first design abides by standard practices and evaluate models with the in-domain development set, while the second one carries out evaluation using a development domain, or the out-of-domain development set. Across a series of monolingual and crosslinguistic training settings, our results demonstrate the utility of neural encoder-decoder architecture when coupled with multi-task learning.

pdf bib
Representation of Yine [Arawak] Morphology by Finite State Transducer Formalism
Adriano Ingunza Torres | John Miller | Arturo Oncevay | Roberto Zariquiey Biondi

We represent the complexity of Yine (Arawak) morphology with a finite state transducer (FST) based morphological analyzer. Yine is a low-resource indigenous polysynthetic Peruvian language spoken by approximately 3,000 people and is classified as ‘definitely endangered’ by UNESCO. We review Yine morphology focusing on morphophonology, possessive constructions and verbal predicates. Then we develop FSTs to model these components proposing techniques to solve challenging problems such as complex patterns of incorporating open and closed category arguments. This is a work in progress and we still have more to do in the development and verification of our analyzer. Our analyzer will serve both as a tool to better document the Yine language and as a component of natural language processing (NLP) applications such as spell checking and correction.

pdf bib
Leveraging English Word Embeddings for Semi-Automatic Semantic Classification in Nêhiyawêwin (Plains Cree)
Atticus Harrigan | Antti Arppe

This paper details a semi-automatic method of word clustering for the Algonquian language, Nêhiyawêwin (Plains Cree). Although this method worked well, particularly for nouns, it required some amount of manual postprocessing. The main benefit of this approach over implementing an existing classification ontology is that this method approaches the language from an endogenous point of view, while performing classification quicker than in a fully manual context.

pdf bib
Restoring the Sister: Reconstructing a Lexicon from Sister Languages using Neural Machine Translation
Remo Nitschke

The historical comparative method has a long history in historical linguists. It describes a process by which historical linguists aim to reverse-engineer the historical developments of language families in order to reconstruct proto-forms and familial relations between languages. In recent years, there have been multiple attempts to replicate this process through machine learning, especially in the realm of cognate detection (List et al., 2016; Ciobanu and Dinu, 2014; Rama et al., 2018). So far, most of these experiments aimed at actual reconstruction have attempted the prediction of a proto-form from the forms of the daughter languages (Ciobanu and Dinu, 2018; Meloni et al., 2019).. Here, we propose a reimplementation that uses modern related languages, or sisters, instead, to reconstruct the vocabulary of a target language. In particular, we show that we can reconstruct vocabulary of a target language by using a fairly small data set of parallel cognates from different sister languages, using a neural machine translation (NMT) architecture with a standard encoder-decoder setup. This effort is directly in furtherance of the goal to use machine learning tools to help under-served language communities in their efforts at reclaiming, preserving, or reconstructing their own languages.

pdf bib
Expanding Universal Dependencies for Polysynthetic Languages: A Case of St. Lawrence Island Yupik
Hyunji Hayley Park | Lane Schwartz | Francis Tyers

This paper describes the development of the first Universal Dependencies (UD) treebank for St. Lawrence Island Yupik, an endangered language spoken in the Bering Strait region. While the UD guidelines provided a general framework for our annotations, language-specific decisions were made necessary by the rich morphology of the polysynthetic language. Most notably, we annotated a corpus at the morpheme level as well as the word level. The morpheme level annotation was conducted using an existing morphological analyzer and manual disambiguation. By comparing the two resulting annotation schemes, we argue that morpheme-level annotation is essential for polysynthetic languages like St. Lawrence Island Yupik. Word-level annotation results in degenerate trees for some Yupik sentences and often fails to capture syntactic relations that can be manifested at the morpheme level. Dependency parsing experiments provide further support for morpheme-level annotation. Implications for UD annotation of other polysynthetic languages are discussed.

pdf bib
The More Detail, the Better? – Investigating the Effects of Semantic Ontology Specificity on Vector Semantic Classification with a Plains Cree / nêhiyawêwin Dictionary
Daniel Dacanay | Atticus Harrigan | Arok Wolvengrey | Antti Arppe

One problem in the task of automatic semantic classification is the problem of determining the level on which to group lexical items. This is often accomplished using pre-made, hierarchical semantic ontologies. The following investigation explores the computational assignment of semantic classifications on the contents of a dictionary of nêhiyawêwin / Plains Cree (ISO: crk, Algonquian, Western Canada and United States), using a semantic vector space model, and following two semantic ontologies, WordNet and SIL’s Rapid Words, and compares how these computational results compare to manual classifications with the same two ontologies.

pdf bib
Experiments on a Guarani Corpus of News and Social Media
Santiago Góngora | Nicolás Giossa | Luis Chiruzzo

While Guarani is widely spoken in South America, obtaining a large amount of Guarani text from the web is hard. We present the building process of a Guarani corpus composed of a parallel Guarani-Spanish set of news articles, and a monolingual set of tweets. We perform some word embeddings experiments aiming at evaluating the quality of the Guarani split of the corpus, finding encouraging results but noticing that more diversity in text domains might be needed for further improvements.

pdf bib
Towards a First Automatic Unsupervised Morphological Segmentation for Inuinnaqtun
Ngoc Tan Le | Fatiha Sadat

Low-resource polysynthetic languages pose many challenges in NLP tasks, such as morphological analysis and Machine Translation, due to available resources and tools, and the morphologically complex languages. This research focuses on the morphological segmentation while adapting an unsupervised approach based on Adaptor Grammars in low-resource setting. Experiments and evaluations on Inuinnaqtun, one of Inuit language family in Northern Canada, considered a language that will be extinct in less than two generations, have shown promising results.

pdf bib
Toward Creation of Ancash Lexical Resources from OCR
Johanna Cordova | Damien Nouvel

The Quechua linguistic family has a limited number of NLP resources, most of them being dedicated to Southern Quechua, whereas the varieties of Central Quechua have, to the best of our knowledge, no specific resources (software, lexicon or corpus). Our work addresses this issue by producing two resources for the Ancash Quechua: a full digital version of a dictionary, and an OCR model adapted to the considered variety. In this paper, we describe the steps towards this goal: we first measure performances of existing models for the task of digitising a Quechua dictionary, then adapt a model for the Ancash variety, and finally create a reliable resource for NLP in XML-TEI format. We hope that this work will be a basis for initiating NLP projects for Central Quechua, and that it will encourage digitisation initiatives for under-resourced languages.

pdf bib
Ayuuk-Spanish Neural Machine Translator
Delfino Zacarías Márquez | Ivan Vladimir Meza Ruiz

This paper presents the first neural machine translator system for the Ayuuk language. In our experiments we translate from Ayuuk to Spanish, and fromSpanish to Ayuuk. Ayuuk is a language spoken in the Oaxaca state of Mexico by the Ayuukjä’äy people (in Spanish commonly known as Mixes. We use different sources to create a low-resource parallel corpus, more than 6,000 phrases. For some of these resources we rely on automatic alignment. The proposed system is based on the Transformer neural architecture and it uses sub-word level tokenization as the input. We show the current performance given the resources we have collected for the San Juan Güichicovi variant, they are promising, up to 5 BLEU. We based our development on the Masakhane project for African languages.

pdf bib
Explicit Tone Transcription Improves ASR Performance in Extremely Low-Resource Languages: A Case Study in Bribri
Rolando Coto-Solano

Linguistic tone is transcribed for input into ASR systems in numerous ways. This paper shows a systematic test of several transcription styles, using as an example the Chibchan language Bribri, an extremely low-resource language from Costa Rica. The most successful models separate the tone from the vowel, so that the ASR algorithms learn tone patterns independently. These models showed improvements ranging from 4% to 25% in character error rate (CER), and between 3% and 23% in word error rate (WER). This is true for both traditional GMM/HMM and end-to-end CTC algorithms. This paper also presents the first attempt to train ASR models for Bribri. The best performing models had a CER of 33% and a WER of 50%. Despite the disadvantage of using hand-engineered representations, these models were trained on only 68 minutes of data, and therefore show the potential of ASR to generate further training materials and aid in the documentation and revitalization of the language.

pdf bib
Towards a morphological transducer and orthography converter for Western Tlacolula Valley Zapotec
Jonathan Washington | Felipe Lopez | Brook Lillehaugen

This paper presents work towards a morphological transducer and orthography converter for Dizhsa, or San Lucas Quiaviní Zapotec, an endangered Western Tlacolula Valley Zapotec language. The implementation of various aspects of the language’s morphology is presented, as well as the transducer’s ability to perform analysis in two orthographies and convert between them. Potential uses of the transducer for language maintenance and issues of licensing are also discussed. Evaluation of the transducer shows that it is fairly robust although incomplete, and evaluation of orthographic conversion shows that this method is strongly affected by the coverage of the transducer.

pdf bib
Peru is Multilingual, Its Machine Translation Should Be Too?
Arturo Oncevay

Peru is a multilingual country with a long history of contact between the indigenous languages and Spanish. Taking advantage of this context for machine translation is possible with multilingual approaches for learning both unsupervised subword segmentation and neural machine translation models. The study proposes the first multilingual translation models for four languages spoken in Peru: Aymara, Ashaninka, Quechua and Shipibo-Konibo, providing both many-to-Spanish and Spanish-to-many models and outperforming pairwise baselines in most of them. The task exploited a large English-Spanish dataset for pre-training, monolingual texts with tagged back-translation, and parallel corpora aligned with English. Finally, by fine-tuning the best models, we also assessed the out-of-domain capabilities in two evaluation datasets for Quechua and a new one for Shipibo-Konibo.

pdf bib
Findings of the AmericasNLP 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas
Manuel Mager | Arturo Oncevay | Abteen Ebrahimi | John Ortega | Annette Rios | Angela Fan | Ximena Gutierrez-Vasques | Luis Chiruzzo | Gustavo Giménez-Lugo | Ricardo Ramos | Ivan Vladimir Meza Ruiz | Rolando Coto-Solano | Alexis Palmer | Elisabeth Mager-Hois | Vishrav Chaudhary | Graham Neubig | Ngoc Thang Vu | Katharina Kann

This paper presents the results of the 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas. The shared task featured two independent tracks, and participants submitted machine translation systems for up to 10 indigenous languages. Overall, 8 teams participated with a total of 214 submissions. We provided training sets consisting of data collected from various sources, as well as manually translated sentences for the development and test sets. An official baseline trained on this data was also provided. Team submissions featured a variety of architectures, including both statistical and neural models, and for the majority of languages, many teams were able to considerably improve over the baseline. The best performing systems achieved 12.97 ChrF higher than baseline, when averaged across languages.

pdf bib
Open Machine Translation for Low Resource South American Languages (AmericasNLP 2021 Shared Task Contribution)
Shantipriya Parida | Subhadarshi Panda | Amulya Dash | Esau Villatoro-Tello | A. Seza Doğruöz | Rosa M. Ortega-Mendoza | Amadeo Hernández | Yashvardhan Sharma | Petr Motlicek

This paper describes the team (“Tamalli”)’s submission to AmericasNLP2021 shared task on Open Machine Translation for low resource South American languages. Our goal was to evaluate different Machine Translation (MT) techniques, statistical and neural-based, under several configuration settings. We obtained the second-best results for the language pairs “Spanish-Bribri”, “Spanish-Asháninka”, and “Spanish-Rarámuri” in the category “Development set not used for training”. Our performed experiments will serve as a point of reference for researchers working on MT with low-resource languages.

pdf bib
NRC-CNRC Machine Translation Systems for the 2021 AmericasNLP Shared Task
Rebecca Knowles | Darlene Stewart | Samuel Larkin | Patrick Littell

We describe the NRC-CNRC systems submitted to the AmericasNLP shared task on machine translation. We submitted systems translating from Spanish into Wixárika, Nahuatl, Rarámuri, and Guaraní. Our best neural machine translation systems used multilingual pretraining, ensembling, finetuning, training on parts of the development data, and subword regularization. We also submitted translation memory systems as a strong baseline.

pdf bib
Low-Resource Machine Translation Using Cross-Lingual Language Model Pretraining
Francis Zheng | Machel Reid | Edison Marrese-Taylor | Yutaka Matsuo

This paper describes UTokyo’s submission to the AmericasNLP 2021 Shared Task on machine translation systems for indigenous languages of the Americas. We present a low-resource machine translation system that improves translation accuracy using cross-lingual language model pretraining. Our system uses an mBART implementation of fairseq to pretrain on a large set of monolingual data from a diverse set of high-resource languages before finetuning on 10 low-resource indigenous American languages: Aymara, Bribri, Asháninka, Guaraní, Wixarika, Náhuatl, Hñähñu, Quechua, Shipibo-Konibo, and Rarámuri. On average, our system achieved BLEU scores that were 1.64 higher and chrF scores that were 0.0749 higher than the baseline.

pdf bib
The REPU CSSpanish–Quechua Submission to the AmericasNLP 2021 Shared Task on Open Machine Translation
Oscar Moreno

We present the submission of REPUcs to the AmericasNLP machine translation shared task for the low resource language pair Spanish–Quechua. Our neural machine translation system ranked first in Track two (development set not used for training) and third in Track one (training includes development data). Our contribution is focused on: (i) the collection of new parallel data from different web sources (poems, lyrics, lexicons, handbooks), and (ii) using large Spanish–English data for pre-training and then fine-tuning the Spanish–Quechua system. This paper describes the new parallel corpora and our approach in detail.

pdf bib
Moses and the Character-Based Random Babbling Baseline: CoAStaL at AmericasNLP 2021 Shared Task
Marcel Bollmann | Rahul Aralikatte | Héctor Murrieta Bello | Daniel Hershcovich | Miryam de Lhoneux | Anders Søgaard

We evaluated a range of neural machine translation techniques developed specifically for low-resource scenarios. Unsuccessfully. In the end, we submitted two runs: (i) a standard phrase-based model, and (ii) a random babbling baseline using character trigrams. We found that it was surprisingly hard to beat (i), in spite of this model being, in theory, a bad fit for polysynthetic languages; and more interestingly, that (ii) was better than several of the submitted systems, highlighting how difficult low-resource machine translation for polysynthetic languages is.

pdf bib
The Helsinki submission to the AmericasNLP shared task
Raúl Vázquez | Yves Scherrer | Sami Virpioja | Jörg Tiedemann

The University of Helsinki participated in the AmericasNLP shared task for all ten language pairs. Our multilingual NMT models reached the first rank on all language pairs in track 1, and first rank on nine out of ten language pairs in track 2. We focused our efforts on three aspects: (1) the collection of additional data from various sources such as Bibles and political constitutions, (2) the cleaning and filtering of training data with the OpusFilter toolkit, and (3) different multilingual training techniques enabled by the latest version of the OpenNMT-py toolkit to make the most efficient use of the scarce data. This paper describes our efforts in detail.

pdf bib
IndT5: A Text-to-Text Transformer for 10 Indigenous Languages
El Moatez Billah Nagoudi | Wei-Rui Chen | Muhammad Abdul-Mageed | Hasan Cavusoglu

Transformer language models have become fundamental components of NLP based pipelines. Although several Transformer have been introduced to serve many languages, there is a shortage of models pre-trained for low-resource and Indigenous languages in particular. In this work, we introduce IndT5, the first Transformer language model for Indigenous languages. To train IndT5, we build IndCorpus, a new corpus for 10 Indigenous languages and Spanish. We also present the application of IndT5 to machine translation by investigating different approaches to translate between Spanish and the Indigenous languages as part of our contribution to the AmericasNLP 2021 Shared Task on Open Machine Translation. IndT5 and IndCorpus are publicly available for research.


bib (full) Proceedings of the 8th Workshop on Argument Mining

pdf bib
Proceedings of the 8th Workshop on Argument Mining
Khalid Al-Khatib | Yufang Hou | Manfred Stede

pdf bib
Argument Mining on Twitter: A Case Study on the Planned Parenthood Debate
Muhammad Mahad Afzal Bhatti | Ahsan Suheer Ahmad | Joonsuk Park

Twitter is a popular platform to share opinions and claims, which may be accompanied by the underlying rationale. Such information can be invaluable to policy makers, marketers and social scientists, to name a few. However, the effort to mine arguments on Twitter has been limited, mainly because a tweet is typically too short to contain an argument — both a claim and a premise. In this paper, we propose a novel problem formulation to mine arguments from Twitter: We formulate argument mining on Twitter as a text classification task to identify tweets that serve as premises for a hashtag that represents a claim of interest. To demonstrate the efficacy of this formulation, we mine arguments for and against funding Planned Parenthood expressed in tweets. We first present a new dataset of 24,100 tweets containing hashtag #StandWithPP or #DefundPP, manually labeled as SUPPORT WITH REASON, SUPPORT WITHOUT REASON, and NO EXPLICIT SUPPORT. We then train classifiers to determine the types of tweets, achieving the best performance of 71% F1. Our results manifest claim-specific keywords as the most informative features, which in turn reveal prominent arguments for and against funding Planned Parenthood.

pdf bib
Multi-task and Multi-corpora Training Strategies to Enhance Argumentative Sentence Linking Performance
Jan Wira Gotama Putra | Simone Teufel | Takenobu Tokunaga

Argumentative structure prediction aims to establish links between textual units and label the relationship between them, forming a structured representation for a given input text. The former task, linking, has been identified by earlier works as particularly challenging, as it requires finding the most appropriate structure out of a very large search space of possible link combinations. In this paper, we improve a state-of-the-art linking model by using multi-task and multi-corpora training strategies. Our auxiliary tasks help the model to learn the role of each sentence in the argumentative structure. Combining multi-corpora training with a selective sampling strategy increases the training data size while ensuring that the model still learns the desired target distribution well. Experiments on essays written by English-as-a-foreign-language learners show that both strategies significantly improve the model’s performance; for instance, we observe a 15.8% increase in the F1-macro for individual link predictions.

pdf bib
Explainable Unsupervised Argument Similarity Rating with Abstract Meaning Representation and Conclusion Generation
Juri Opitz | Philipp Heinisch | Philipp Wiesenbach | Philipp Cimiano | Anette Frank

When assessing the similarity of arguments, researchers typically use approaches that do not provide interpretable evidence or justifications for their ratings. Hence, the features that determine argument similarity remain elusive. We address this issue by introducing novel argument similarity metrics that aim at high performance and explainability. We show that Abstract Meaning Representation (AMR) graphs can be useful for representing arguments, and that novel AMR graph metrics can offer explanations for argument similarity ratings. We start from the hypothesis that similar premises often lead to similar conclusions—and extend an approach for AMR-based argument similarity rating by estimating, in addition, the similarity of conclusions that we automatically infer from the arguments used as premises. We show that AMR similarity metrics make argument similarity judgements more interpretable and may even support argument quality judgements. Our approach provides significant performance improvements over strong baselines in a fully unsupervised setting. Finally, we make first steps to address the problem of reference-less evaluation of argumentative conclusion generations.

pdf bib
Image Retrieval for Arguments Using Stance-Aware Query Expansion
Johannes Kiesel | Nico Reichenbach | Benno Stein | Martin Potthast

Many forms of argumentation employ images as persuasive means, but research in argument mining has been focused on verbal argumentation so far. This paper shows how to integrate images into argument mining research, specifically into argument retrieval. By exploiting the sophisticated image representations of keyword-based image search, we propose to use semantic query expansion for both the pro and the con stance to retrieve “argumentative images” for the respective stance. Our results indicate that even simple expansions provide a strong baseline, reaching a precision@10 of 0.49 for images being (1) on-topic, (2) argumentative, and (3) on-stance. An in-depth analysis reveals a high topic dependence of the retrieval performance and shows the need to further investigate on images providing contextual information.

pdf bib
Is Stance Detection Topic-Independent and Cross-topic Generalizable? - A Reproduction Study
Myrthe Reuver | Suzan Verberne | Roser Morante | Antske Fokkens

Cross-topic stance detection is the task to automatically detect stances (pro, against, or neutral) on unseen topics. We successfully reproduce state-of-the-art cross-topic stance detection work (Reimers et. al, 2019), and systematically analyze its reproducibility. Our attention then turns to the cross-topic aspect of this work, and the specificity of topics in terms of vocabulary and socio-cultural context. We ask: To what extent is stance detection topic-independent and generalizable across topics? We compare the model’s performance on various unseen topics, and find topic (e.g. abortion, cloning), class (e.g. pro, con), and their interaction affecting the model’s performance. We conclude that investigating performance on different topics, and addressing topic-specific vocabulary and context, is a future avenue for cross-topic stance detection. References Nils Reimers, Benjamin Schiller, Tilman Beck, Johannes Daxenberger, Christian Stab, and Iryna Gurevych. 2019. Classification and Clustering of Arguments with Contextualized Word Embeddings. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 567–578, Florence, Italy. Association for Computational Linguistics.

pdf bib
Exploring Methodologies for Collecting High-Quality Implicit Reasoning in Arguments
Keshav Singh | Farjana Sultana Mim | Naoya Inoue | Shoichi Naito | Kentaro Inui

Annotation of implicit reasoning (i.e., warrant) in arguments is a critical resource to train models in gaining deeper understanding and correct interpretation of arguments. However, warrants are usually annotated in unstructured form, having no restriction on their lexical structure which sometimes makes it difficult to interpret how warrants relate to any of the information given in claim and premise. Moreover, assessing and determining better warrants from the large variety of reasoning patterns of unstructured warrants becomes a formidable task. Therefore, in order to annotate warrants in a more interpretative and restrictive way, we propose two methodologies to annotate warrants in a semi-structured form. To the best of our knowledge, we are the first to show how such semi-structured warrants can be annotated on a large scale via crowdsourcing. We demonstrate through extensive quality evaluation that our methodologies enable collecting better quality warrants in comparison to unstructured annotations. To further facilitate research towards the task of explicating warrants in arguments, we release our materials publicly (i.e., crowdsourcing guidelines and collected warrants).

pdf bib
Assessing the Sufficiency of Arguments through Conclusion Generation
Timon Gurcke | Milad Alshomary | Henning Wachsmuth

The premises of an argument give evidence or other reasons to support a conclusion. However, the amount of support required depends on the generality of a conclusion, the nature of the individual premises, and similar. An argument whose premises make its conclusion rationally worthy to be drawn is called sufficient in argument quality research. Previous work tackled sufficiency assessment as a standard text classification problem, not modeling the inherent relation of premises and conclusion. In this paper, we hypothesize that the conclusion of a sufficient argument can be generated from its premises. To study this hypothesis, we explore the potential of assessing sufficiency based on the output of large-scale pre-trained language models. Our best model variant achieves an F1-score of .885, outperforming the previous state-of-the-art and being on par with human experts. While manual evaluation reveals the quality of the generated conclusions, their impact remains low ultimately.

pdf bib
M-Arg: Multimodal Argument Mining Dataset for Political Debates with Audio and Transcripts
Rafael Mestre | Razvan Milicin | Stuart E. Middleton | Matt Ryan | Jiatong Zhu | Timothy J. Norman

Argumentation mining aims at extracting, analysing and modelling people’s arguments, but large, high-quality annotated datasets are limited, and no multimodal datasets exist for this task. In this paper, we present M-Arg, a multimodal argument mining dataset with a corpus of US 2020 presidential debates, annotated through crowd-sourced annotations. This dataset allows models to be trained to extract arguments from natural dialogue such as debates using information like the intonation and rhythm of the speaker. Our dataset contains 7 hours of annotated US presidential debates, 6527 utterances and 4104 relation labels, and we report results from different baseline models, namely a text-only model, an audio-only model and multimodal models that extract features from both text and audio. With accuracy reaching 0.86 in multimodal models, we find that audio features provide added value with respect to text-only models.

pdf bib
Citizen Involvement in Urban Planning - How Can Municipalities Be Supported in Evaluating Public Participation Processes for Mobility Transitions?
Julia Romberg | Stefan Conrad

Public participation processes allow citizens to engage in municipal decision-making processes by expressing their opinions on specific issues. Municipalities often only have limited resources to analyze a possibly large amount of textual contributions that need to be evaluated in a timely and detailed manner. Automated support for the evaluation is therefore essential, e.g. to analyze arguments. In this paper, we address (A) the identification of argumentative discourse units and (B) their classification as major position or premise in German public participation processes. The objective of our work is to make argument mining viable for use in municipalities. We compare different argument mining approaches and develop a generic model that can successfully detect argument structures in different datasets of mobility-related urban planning. We introduce a new data corpus comprising five public participation processes. In our evaluation, we achieve high macro F1 scores (0.76 - 0.80 for the identification of argumentative units; 0.86 - 0.93 for their classification) on all datasets. Additionally, we improve previous results for the classification of argumentative units on a similar German online participation dataset.

pdf bib
Argumentation Mining in Scientific Literature for Sustainable Development
Aris Fergadis | Dimitris Pappas | Antonia Karamolegkou | Haris Papageorgiou

Science, technology and innovation (STI) policies have evolved in the past decade. We are now progressing towards policies that are more aligned with sustainable development through integrating social, economic and environmental dimensions. In this new policy environment, the need to keep track of innovation from its conception in Science and Research has emerged. Argumentation mining, an interdisciplinary NLP field, gives rise to the required technologies. In this study, we present the first STI-driven multidisciplinary corpus of scientific abstracts annotated for argumentative units (AUs) on the sustainable development goals (SDGs) set by the United Nations (UN). AUs are the sentences conveying the Claim(s) reported in the author’s original research and the Evidence provided for support. We also present a set of strong, BERT-based neural baselines achieving an f1-score of 70.0 for Claim and 62.4 for Evidence identification evaluated with 10-fold cross-validation. To demonstrate the effectiveness of our models, we experiment with different test sets showing comparable performance across various SDG policy domains. Our dataset and models are publicly available for research purposes.

pdf bib
Bayesian Argumentation-Scheme Networks: A Probabilistic Model of Argument Validity Facilitated by Argumentation Schemes
Takahiro Kondo | Koki Washio | Katsuhiko Hayashi | Yusuke Miyao

We propose a methodology for representing the reasoning structure of arguments using Bayesian networks and predicate logic facilitated by argumentation schemes. We express the meaning of text segments using predicate logic and map the boolean values of predicate logic expressions to nodes in a Bayesian network. The reasoning structure among text segments is described with a directed acyclic graph. While our formalism is highly expressive and capable of describing the informal logic of human arguments, it is too open-ended to actually build a network for an argument. It is not at all obvious which segment of argumentative text should be considered as a node in a Bayesian network, and how to decide the dependencies among nodes. To alleviate the difficulty, we provide abstract network fragments, called idioms, which represent typical argument justification patterns derived from argumentation schemes. The network construction process is decomposed into idiom selection, idiom instantiation, and idiom combination. We define 17 idioms in total by referring to argumentation schemes as well as analyzing actual arguments and fitting idioms to them. We also create a dataset consisting of pairs of an argumentative text and a corresponding Bayesian network. Our dataset contains about 2,400 pairs, which is large in the research area of argumentation schemes.

pdf bib
Multilingual Counter Narrative Type Classification
Yi-Ling Chung | Marco Guerini | Rodrigo Agerri

The growing interest in employing counter narratives for hatred intervention brings with it a focus on dataset creation and automation strategies. In this scenario, learning to recognize counter narrative types from natural text is expected to be useful for applications such as hate speech countering, where operators from non-governmental organizations are supposed to answer to hate with several and diverse arguments that can be mined from online sources. This paper presents the first multilingual work on counter narrative type classification, evaluating SoTA pre-trained language models in monolingual, multilingual and cross-lingual settings. When considering a fine-grained annotation of counter narrative classes, we report strong baseline classification results for the majority of the counter narrative types, especially if we translate every language to English before cross-lingual prediction. This suggests that knowledge about counter narratives can be successfully transferred across languages.

pdf bib
Predicting Moderation of Deliberative Arguments: Is Argument Quality the Key?
Neele Falk | Iman Jundi | Eva Maria Vecchi | Gabriella Lapesa

Human moderation is commonly employed in deliberative contexts (argumentation and discussion targeting a shared decision on an issue relevant to a group, e.g., citizens arguing on how to employ a shared budget). As the scale of discussion enlarges in online settings, the overall discussion quality risks to drop and moderation becomes more important to assist participants in having a cooperative and productive interaction. The scale also makes it more important to employ NLP methods for(semi-)automatic moderation, e.g. to prioritize when moderation is most needed. In this work, we make the first steps towards (semi-)automatic moderation by using state-of-the-art classification models to predict which posts require moderation, showing that while the task is undoubtedly difficult, performance is significantly above baseline. We further investigate whether argument quality is a key indicator of the need for moderation, showing that surprisingly, high quality arguments also trigger moderation. We make our code and data publicly available.

pdf bib
Self-trained Pretrained Language Models for Evidence Detection
Mohamed Elaraby | Diane Litman

Argument role labeling is a fundamental task in Argument Mining research. However, such research often suffers from a lack of large-scale datasets labeled for argument roles such as evidence, which is crucial for neural model training. While large pretrained language models have somewhat alleviated the need for massive manually labeled datasets, how much these models can further benefit from self-training techniques hasn’t been widely explored in the literature in general and in Argument Mining specifically. In this work, we focus on self-trained language models (particularly BERT) for evidence detection. We provide a thorough investigation on how to utilize pseudo labels effectively in the self-training scheme. We also assess whether adding pseudo labels from an out-of-domain source can be beneficial. Experiments on sentence level evidence detection show that self-training can complement pretrained language models to provide performance improvements.

pdf bib
Multi-task Learning in Argument Mining for Persuasive Online Discussions
Nhat Tran | Diane Litman

We utilize multi-task learning to improve argument mining in persuasive online discussions, in which both micro-level and macro-level argumentation must be taken into consideration. Our models learn to identify argument components and the relations between them at the same time. We also tackle the low-precision which arises from imbalanced relation data by experimenting with SMOTE and XGBoost. Our approaches improve over baselines that use the same pre-trained language model but process the argument component task and two relation tasks separately. Furthermore, our results suggest that the tasks to be incorporated into multi-task learning should be taken into consideration as using all relevant tasks does not always lead to the best performance.

pdf bib
Overview of the 2021 Key Point Analysis Shared Task
Roni Friedman | Lena Dankin | Yufang Hou | Ranit Aharonov | Yoav Katz | Noam Slonim

We describe the 2021 Key Point Analysis (KPA-2021) shared task on key point analysis that we organized as a part of the 8th Workshop on Argument Mining (ArgMining 2021) at EMNLP 2021. We outline various approaches and discuss the results of the shared task. We expect the task and the findings reported in this paper to be relevant for researchers working on text summarization and argument mining.

pdf bib
Matching The Statements: A Simple and Accurate Model for Key Point Analysis
Hoang Phan | Long Nguyen | Long Nguyen | Khanh Doan

Key Point Analysis (KPA) is one of the most essential tasks in building an Opinion Summarization system, which is capable of generating key points for a collection of arguments toward a particular topic. Furthermore, KPA allows quantifying the coverage of each summary by counting its matched arguments. With the aim of creating high-quality summaries, it is necessary to have an in-depth understanding of each individual argument as well as its universal semantic in a specified context. In this paper, we introduce a promising model, named Matching the Statements (MTS) that incorporates the discussed topic information into arguments/key points comprehension to fully understand their meanings, thus accurately performing ranking and retrieving best-match key points for an input argument. Our approach has achieved the 4th place in Track 1 of the Quantitative Summarization – Key Point Analysis Shared Task by IBM, yielding a competitive performance of 0.8956 (3rd) and 0.9632 (7th) strict and relaxed mean Average Precision, respectively.

pdf bib
Modern Talking in Key Point Analysis: Key Point Matching using Pretrained Encoders
Jan Heinrich Reimer | Thi Kim Hanh Luu | Max Henze | Yamen Ajjour

We contribute to the ArgMining 2021 shared task on Quantitative Summarization and Key Point Analysis with two approaches for argument key point matching. For key point matching the task is to decide if a short key point matches the content of an argument with the same topic and stance towards the topic. We approach this task in two ways: First, we develop a simple rule-based baseline matcher by computing token overlap after removing stop words, stemming, and adding synonyms/antonyms. Second, we fine-tune pretrained BERT and RoBERTalanguage models as aregression classifier for only a single epoch. We manually examine errors of our proposed matcher models and find that long arguments are harder to classify. Our fine-tuned RoBERTa-Base model achieves a mean average precision score of 0.913, the best score for strict labels of all participating teams.

pdf bib
Key Point Analysis via Contrastive Learning and Extractive Argument Summarization
Milad Alshomary | Timon Gurcke | Shahbaz Syed | Philipp Heinisch | Maximilian Spliethöver | Philipp Cimiano | Martin Potthast | Henning Wachsmuth

Key point analysis is the task of extracting a set of concise and high-level statements from a given collection of arguments, representing the gist of these arguments. This paper presents our proposed approach to the Key Point Analysis Shared Task, colocated with the 8th Workshop on Argument Mining. The approach integrates two complementary components. One component employs contrastive learning via a siamese neural network for matching arguments to key points; the other is a graph-based extractive summarization model for generating key points. In both automatic and manual evaluation, our approach was ranked best among all submissions to the shared task.

pdf bib
Key Point Matching with Transformers
Emanuele Cosenza

This work aims at describing a solution for the Track 1 of the KPA 2021 shared task, analyzing different methodologies for the specific problem of key point matching. The analysis focuses on transformer based architectures, experimentally investigating the effectiveness of variants specifically tailored to the task.

pdf bib
Team Enigma at ArgMining-EMNLP 2021: Leveraging Pre-trained Language Models for Key Point Matching
Manav Kapadnis | Sohan Patnaik | Siba Panigrahi | Varun Madhavan | Abhilash Nandy

We present the system description for our submission towards the Key Point Analysis Shared Task at ArgMining 2021. Track 1 of the shared task requires participants to develop methods to predict the match score between each pair of arguments and key points, provided they belong to the same topic under the same stance. We leveraged existing state of the art pre-trained language models along with incorporating additional data and features extracted from the inputs (topics, key points, and arguments) to improve performance. We were able to achieve mAP strict and mAP relaxed score of 0.872 and 0.966 respectively in the evaluation phase, securing 5th place on the leaderboard. In the post evaluation phase, we achieved a mAP strict and mAP relaxed score of 0.921 and 0.982 respectively.


pdf (full)
bib (full)
Proceedings of the Second Workshop on Automatic Simultaneous Translation

pdf bib
Proceedings of the Second Workshop on Automatic Simultaneous Translation
Hua Wu | Colin Cherry | Liang Huang | Zhongjun He | Qun Liu | Maha Elbayad | Mark Liberman | Haifeng Wang | Mingbo Ma | Ruiqing Zhang

pdf bib
ICT’s System for AutoSimTrans 2021: Robust Char-Level Simultaneous Translation
Shaolei Zhang | Yang Feng

Simultaneous translation (ST) outputs the translation simultaneously while reading the input sentence, which is an important component of simultaneous interpretation. In this paper, we describe our submitted ST system, which won the first place in the streaming transcription input track of the Chinese-English translation task of AutoSimTrans 2021. Aiming at the robustness of ST, we first propose char-level simultaneous translation and applied wait-k policy on it. Meanwhile, we apply two data processing methods and combine two training methods for domain adaptation. Our method enhance the ST model with stronger robustness and domain adaptability. Experiments on streaming transcription show that our method outperforms the baseline at all latency, especially at low latency, the proposed method improves about 6 BLEU. Besides, ablation studies we conduct verify the effectiveness of each module in the proposed method.

pdf bib
BIT’s system for AutoSimulTrans2021
Mengge Liu | Shuoying Chen | Minqin Li | Zhipeng Wang | Yuhang Guo

In this paper we introduce our Chinese-English simultaneous translation system participating in AutoSimulTrans2021. In simultaneous translation, translation quality and delay are both important. In order to reduce the translation delay, we cut the streaming-input source sentence into segments and translate the segments before the full sentence is received. In order to obtain high-quality translations, we pre-train a translation model with adequate corpus and fine-tune the model with domain adaptation and sentence length adaptation. The experimental results on the evaluation data show that our system performs better than the baseline system.

pdf bib
XMU’s Simultaneous Translation System at NAACL 2021
Shuangtao Li | Jinming Hu | Boli Wang | Xiaodong Shi | Yidong Chen

This paper describes our two systems submitted to the simultaneous translation evaluation at the 2nd automatic simultaneous translation workshop.

pdf bib
System Description on Automatic Simultaneous Translation Workshop
Linjie Chen | Jianzong Wang | Zhangcheng Huang | Xiongbin Ding | Jing Xiao

This paper shows our submission on the second automatic simultaneous translation workshop at NAACL2021. We participate in all the two directions of Chinese-to-English translation, Chinese audioEnglish text and Chinese textEnglish text. We do data filtering and model training techniques to get the best BLEU score and reduce the average lagging. We propose a two-stage simultaneous translation pipeline system which is composed of Quartznet and BPE-based transformer. We propose a competitive simultaneous translation system and achieves a BLEU score of 24.39 in the audio input track.

pdf bib
BSTC: A Large-Scale Chinese-English Speech Translation Dataset
Ruiqing Zhang | Xiyang Wang | Chuanqiang Zhang | Zhongjun He | Hua Wu | Zhi Li | Haifeng Wang | Ying Chen | Qinfei Li

This paper presents BSTC (Baidu Speech Translation Corpus), a large-scale Chinese-English speech translation dataset. This dataset is constructed based on a collection of licensed videos of talks or lectures, including about 68 hours of Mandarin data, their manual transcripts and translations into English, as well as automated transcripts by an automatic speech recognition (ASR) model. We have further asked three experienced interpreters to simultaneously interpret the testing talks in a mock conference setting. This corpus is expected to promote the research of automatic simultaneous translation as well as the development of practical systems. We have organized simultaneous translation tasks and used this corpus to evaluate automatic simultaneous translation systems.

pdf bib
Findings of the Second Workshop on Automatic Simultaneous Translation
Ruiqing Zhang | Chuanqiang Zhang | Zhongjun He | Hua Wu | Haifeng Wang

This paper presents the results of the shared task of the 2nd Workshop on Automatic Simultaneous Translation (AutoSimTrans). The task includes two tracks, one for text-to-text translation and one for speech-to-text, requiring participants to build systems to translate from either the source text or speech into the target text. Different from traditional machine translation, the AutoSimTrans shared task evaluates not only translation quality but also latency. We propose a metric “Monotonic Optimal Sequence” (MOS) considering both quality and latency to rank the submissions. We also discuss some important open issues in simultaneous translation.


bib (full) Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications

pdf bib
Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications
Jill Burstein | Andrea Horbach | Ekaterina Kochmar | Ronja Laarmann-Quante | Claudia Leacock | Nitin Madnani | Ildikó Pilán | Helen Yannakoudakis | Torsten Zesch

pdf bib
Negation Scope Resolution for Chinese as a Second Language
Mengyu Zhang | Weiqi Wang | Shuqiao Sun | Weiwei Sun

This paper studies Negation Scope Resolution (NSR) for Chinese as a Second Language (CSL), which shows many unique characteristics that distinguish itself from “standard” Chinese. We annotate a new moderate-sized corpus that covers two background L1 languages, viz. English and Japanese. We build a neural NSR system, which achieves a new state-of-the-art accuracy on English benchmark data. We leverage this system to gauge how successful NSR for CSL can be. Different native language backgrounds of language learners result in unequal cross-lingual transfer, which has a significant impact on processing second language data. In particular, manual annotation, empirical evaluation and error analysis indicate two non-obvious facts: 1) L2-Chinese, L1-Japanese data are more difficult to analyze and thus annotate than L2-Chinese, L1-English data; 2) computational models trained on L2-Chinese, L1-Japanese data perform better than models trained on L2-Chinese, L1-English data.

pdf bib
Text Simplification by Tagging
Kostiantyn Omelianchuk | Vipul Raheja | Oleksandr Skurzhanskyi

Edit-based approaches have recently shown promising results on multiple monolingual sequence transduction tasks. In contrast to conventional sequence-to-sequence (Seq2Seq) models, which learn to generate text from scratch as they are trained on parallel corpora, these methods have proven to be much more effective since they are able to learn to make fast and accurate transformations while leveraging powerful pre-trained language models. Inspired by these ideas, we present TST, a simple and efficient Text Simplification system based on sequence Tagging, leveraging pre-trained Transformer-based encoders. Our system makes simplistic data augmentations and tweaks in training and inference on a pre-existing system, which makes it less reliant on large amounts of parallel training data, provides more control over the outputs and enables faster inference speeds. Our best model achieves near state-of-the-art performance on benchmark test datasets for the task. Since it is fully non-autoregressive, it achieves faster inference speeds by over 11 times than the current state-of-the-art text simplification system.

pdf bib
Employing distributional semantics to organize task-focused vocabulary learning
Haemanth Santhi Ponnusamy | Detmar Meurers

How can a learner systematically prepare for reading a book they are interested in? In this paper, we explore how computational linguistic methods such as distributional semantics, morphological clustering, and exercise generation can be combined with graph-based learner models to answer this question both conceptually and in practice. Based on highly structured learner models and concepts from network analysis, the learner is guided to efficiently explore the targeted lexical space. They practice using multi-gap learning activities generated from the book. In sum, the approach combines computational linguistic methods with concepts from network analysis and tutoring systems to support learners in pursuing their individual reading task goals.

pdf bib
Synthetic Data Generation for Grammatical Error Correction with Tagged Corruption Models
Felix Stahlberg | Shankar Kumar

Synthetic data generation is widely known to boost the accuracy of neural grammatical error correction (GEC) systems, but existing methods often lack diversity or are too simplistic to generate the broad range of grammatical errors made by human writers. In this work, we use error type tags from automatic annotation tools such as ERRANT to guide synthetic data generation. We compare several models that can produce an ungrammatical sentence given a clean sentence and an error type tag. We use these models to build a new, large synthetic pre-training data set with error tag frequency distributions matching a given development set. Our synthetic data set yields large and consistent gains, improving the state-of-the-art on the BEA-19 and CoNLL-14 test sets. We also show that our approach is particularly effective in adapting a GEC system, trained on mixed native and non-native English, to a native English test set, even surpassing real training data consisting of high-quality sentence pairs.

pdf bib
Broad Linguistic Complexity Analysis for Greek Readability Classification
Savvas Chatzipanagiotidis | Maria Giagkou | Detmar Meurers

This paper explores the linguistic complexity of Greek textbooks as a readability classification task. We analyze textbook corpora for different school subjects and textbooks for Greek as a Second Language, covering a very wide spectrum of school age groups and proficiency levels. A broad range of quantifiable linguistic complexity features (lexical, morphological and syntactic) are extracted and calculated. Conducting experiments with different feature subsets, we show that the different linguistic dimensions contribute orthogonal information, each contributing towards the highest result achieved using all linguistic feature subsets. A readability classifier trained on this basis reaches a classification accuracy of 88.16% for the Greek as a Second Language corpus. To investigate the generalizability of the classification models, we also perform cross-corpus evaluations. We show that the model trained on the most varied text collection (for Greek as a school subject) generalizes best. In addition to advancing the state of the art for Greek readability analysis, the paper also contributes insights on the role of different feature sets and training setups for generalizable readability classification.

pdf bib
Character Set Construction for Chinese Language Learning
Chak Yan Yeung | John Lee

To promote efficient learning of Chinese characters, pedagogical materials may present not only a single character, but a set of characters that are related in meaning and in written form. This paper investigates automatic construction of these character sets. The proposed model represents a character as averaged word vectors of common words containing the character. It then identifies sets of characters with high semantic similarity through clustering. Human evaluation shows that this representation outperforms direct use of character embeddings, and that the resulting character sets capture distinct semantic ranges.

pdf bib
Identifying negative language transfer in learner errors using POS information
Leticia Farias Wanderley | Carrie Demmans Epp

A common mistake made by language learners is the misguided usage of first language rules when communicating in another language. In this paper, n-gram and recurrent neural network language models are used to represent language structures and detect when Chinese native speakers incorrectly transfer rules from their first language (i.e., Chinese) into their English writing. These models make it possible to inform corrective error feedback with error causes, such as negative language transfer. We report the results of our negative language detection experiments with n-gram and recurrent neural network models that were trained using part-of-speech tags. The best performing model achieves an F1-score of 0.51 when tasked with recognizing negative language transfer in English learner data.

pdf bib
Document-level grammatical error correction
Zheng Yuan | Christopher Bryant

Document-level context can provide valuable information in grammatical error correction (GEC), which is crucial for correcting certain errors and resolving inconsistencies. In this paper, we investigate context-aware approaches and propose document-level GEC systems. Additionally, we employ a three-step training strategy to benefit from both sentence-level and document-level data. Our system outperforms previous document-level and all other NMT-based single-model systems, achieving state of the art on a common test set.

pdf bib
Essay Quality Signals as Weak Supervision for Source-based Essay Scoring
Haoran Zhang | Diane Litman

Human essay grading is a laborious task that can consume much time and effort. Automated Essay Scoring (AES) has thus been proposed as a fast and effective solution to the problem of grading student writing at scale. However, because AES typically uses supervised machine learning, a human-graded essay corpus is still required to train the AES model. Unfortunately, such a graded corpus often does not exist, so creating a corpus for machine learning can also be a laborious task. This paper presents an investigation of replacing the use of human-labeled essay grades when training an AES system with two automatically available but weaker signals of essay quality: word count and topic distribution similarity. Experiments using two source-based essay scoring (evidence score) corpora show that while weak supervision does not yield a competitive result when training a neural source-based AES model, it can be used to successfully extract Topical Components (TCs) from a source text, which are required by a supervised feature-based AES model. In particular, results show that feature-based AES performance is comparable with either automatically or manually constructed TCs.

pdf bib
Parsing Argumentative Structure in English-as-Foreign-Language Essays
Jan Wira Gotama Putra | Simone Teufel | Takenobu Tokunaga

This paper presents a study on parsing the argumentative structure in English-as-foreign-language (EFL) essays, which are inherently noisy. The parsing process consists of two steps, linking related sentences and then labelling their relations. We experiment with several deep learning architectures to address each task independently. In the sentence linking task, a biaffine model performed the best. In the relation labelling task, a fine-tuned BERT model performed the best. Two sentence encoders are employed, and we observed that non-fine-tuning models generally performed better when using Sentence-BERT as opposed to BERT encoder. We trained our models using two types of parallel texts: original noisy EFL essays and those improved by annotators, then evaluate them on the original essays. The experiment shows that an end-to-end in-domain system achieved an accuracy of .341. On the other hand, the cross-domain system achieved 94% performance of the in-domain system. This signals that well-written texts can also be useful to train argument mining system for noisy texts.

pdf bib
Training and Domain Adaptation for Supervised Text Segmentation
Goran Glavaš | Ananya Ganesh | Swapna Somasundaran

Unlike traditional unsupervised text segmentation methods, recent supervised segmentation models rely on Wikipedia as the source of large-scale segmentation supervision. These models have, however, predominantly been evaluated on the in-domain (Wikipedia-based) test sets, preventing conclusions about their general segmentation efficacy. In this work, we focus on the domain transfer performance of supervised neural text segmentation in the educational domain. To this end, we first introduce K12Seg, a new dataset for evaluation of supervised segmentation, created from educational reading material for grade-1 to college-level students. We then benchmark a hierarchical text segmentation model (HITS), based on RoBERTa, in both in-domain and domain-transfer segmentation experiments. While HITS produces state-of-the-art in-domain performance (on three Wikipedia-based test sets), we show that, subject to the standard full-blown fine-tuning, it is susceptible to domain overfitting. We identify adapter-based fine-tuning as a remedy that substantially improves transfer performance.

pdf bib
Data Strategies for Low-Resource Grammatical Error Correction
Simon Flachs | Felix Stahlberg | Shankar Kumar

Grammatical Error Correction (GEC) is a task that has been extensively investigated for the English language. However, for low-resource languages the best practices for training GEC systems have not yet been systematically determined. We investigate how best to take advantage of existing data sources for improving GEC systems for languages with limited quantities of high quality training data. We show that methods for generating artificial training data for GEC can benefit from including morphological errors. We also demonstrate that noisy error correction data gathered from Wikipedia revision histories and the language learning website Lang8, are valuable data sources. Finally, we show that GEC systems pre-trained on noisy data sources can be fine-tuned effectively using small amounts of high quality, human-annotated data.

pdf bib
Towards a Data Analytics Pipeline for the Visualisation of Complexity Metrics in L2 writings
Thomas Gaillat | Anas Knefati | Antoine Lafontaine

We present the design of a tool for the visualisation of linguistic complexity in second language (L2) learner writings. We show how metrics can be exploited to visualise complexity in L2 writings in relation to CEFR levels.

pdf bib
Estonian as a Second Language Teacher’s Tools
Tiiu Üksik | Jelena Kallas | Kristina Koppel | Katrin Tsepelina | Raili Pool

The paper presents the results of the project “Teacher’s Tools” (et Õpetaja tööriistad) published as a subpage of the new language portal Sõnaveeb developed by the Institute of the Estonian Language. The toolbox includes four modules: vocabulary, grammar, communicative language activities and text evaluation. The tools are aimed to help teachers and specialists of Estonian as a second language plan courses, create new educational materials, exercises and tests based on CEFR level descriptions.

pdf bib
Assessing Grammatical Correctness in Language Learning
Anisia Katinskaia | Roman Yangarber

We present experiments on assessing the grammatical correctness of learners’ answers in a language-learning System (references to the System, and the links to the released data and code are withheld for anonymity). In particular, we explore the problem of detecting alternative-correct answers: when more than one inflected form of a lemma fits syntactically and semantically in a given context. We approach the problem with the methods for grammatical error detection (GED), since we hypothesize that models for detecting grammatical mistakes can assess the correctness of potential alternative answers in a learning setting. Due to the paucity of training data, we explore the ability of pre-trained BERT to detect grammatical errors and then fine-tune it using synthetic training data. In this work, we focus on errors in inflection. Our experiments show a. that pre-trained BERT performs worse at detecting grammatical irregularities for Russian than for English; b. that fine-tuned BERT yields promising results on assessing the correctness of grammatical exercises; and c. establish a new benchmark for Russian. To further investigate its performance, we compare fine-tuned BERT with one of the state-of-the-art models for GED (Bell et al., 2019) on our dataset and RULEC-GEC (Rozovskaya and Roth, 2019). We release the manually annotated learner dataset, used for testing, for general use.

pdf bib
On the application of Transformers for estimating the difficulty of Multiple-Choice Questions from text
Luca Benedetto | Giovanni Aradelli | Paolo Cremonesi | Andrea Cappelli | Andrea Giussani | Roberto Turrin

Classical approaches to question calibration are either subjective or require newly created questions to be deployed before being calibrated. Recent works explored the possibility of estimating question difficulty from text, but did not experiment with the most recent NLP models, in particular Transformers. In this paper, we compare the performance of previous literature with Transformer models experimenting on a public and a private dataset. Our experimental results show that Transformers are capable of outperforming previously proposed models. Moreover, if an additional corpus of related documents is available, Transformers can leverage that information to further improve calibration accuracy. We characterize the dependence of the model performance on some properties of the questions, showing that it performs best on questions ending with a question mark and Multiple-Choice Questions (MCQs) with one correct choice.

pdf bib
Automatically Generating Cause-and-Effect Questions from Passages
Katherine Stasaski | Manav Rathod | Tony Tu | Yunfang Xiao | Marti A. Hearst

Automated question generation has the potential to greatly aid in education applications, such as online study aids to check understanding of readings. The state-of-the-art in neural question generation has advanced greatly, due in part to the availability of large datasets of question-answer pairs. However, the questions generated are often surface-level and not challenging for a human to answer. To develop more challenging questions, we propose the novel task of cause-and-effect question generation. We build a pipeline that extracts causal relations from passages of input text, and feeds these as input to a state-of-the-art neural question generator. The extractor is based on prior work that classifies causal relations by linguistic category (Cao et al., 2016; Altenberg, 1984). This work results in a new, publicly available collection of cause-and-effect questions. We evaluate via both automatic and manual metrics and find performance improves for both question generation and question answering when we utilize a small auxiliary data source of cause-and-effect questions for fine-tuning. Our approach can be easily applied to generate cause-and-effect questions from other text collections and educational material, allowing for adaptable large-scale generation of cause-and-effect questions.

pdf bib
Interventions Recommendation: Professionals’ Observations Analysis in Special Needs Education
Javier Muñoz | Felipe Bravo-Marquez

We present a new task in educational NLP, recommend the best interventions to help special needs education professionals to work with students with different disabilities. We use the professionals’ observations of the students together with the students diagnosis and other chosen interventions to predict the best interventions for Chilean special needs students.

pdf bib
C-Test Collector: A Proficiency Testing Application to Collect Training Data for C-Tests
Christian Haring | Rene Lehmann | Andrea Horbach | Torsten Zesch

We present the C-Test Collector, a web-based tool that allows language learners to test their proficiency level using c-tests. Our tool collects anonymized data on test performance, which allows teachers to gain insights into common error patterns. At the same time, it allows NLP researchers to collect training data for being able to generate c-test variants at the desired difficulty level.

pdf bib
Virtual Pre-Service Teacher Assessment and Feedback via Conversational Agents
Debajyoti Datta | Maria Phillips | James P. Bywater | Jennifer Chiu | Ginger S. Watson | Laura Barnes | Donald Brown

Conversational agents and assistants have been used for decades to facilitate learning. There are many examples of conversational agents used for educational and training purposes in K-12, higher education, healthcare, the military, and private industry settings. The most common forms of conversational agents in education are teaching agents that directly teach and support learning, peer agents that serve as knowledgeable learning companions to guide learners in the learning process, and teachable agents that function as a novice or less-knowledgeable student trained and taught by a learner who learns by teaching. The Instructional Quality Assessment (IQA) provides a robust framework to evaluate reading comprehension and mathematics instruction. We developed a system for pre-service teachers, individuals in a teacher preparation program, to evaluate teaching instruction quality based on a modified interpretation of IQA metrics. Our demonstration and approach take advantage of recent advances in Natural Language Processing (NLP) and deep learning for each dialogue system component. We built an open-source conversational agent system to engage pre-service teachers in a specific mathematical scenario focused on scale factor with the aim to provide feedback on pre-service teachers’ questioning strategies. We believe our system is not only practical for teacher education programs but can also enable other researchers to build new educational scenarios with minimal effort.

pdf bib
Automated Classification of Written Proficiency Levels on the CEFR-Scale through Complexity Contours and RNNs
Elma Kerz | Daniel Wiechmann | Yu Qiao | Emma Tseng | Marcus Ströbel

Automatically predicting the level of second language (L2) learner proficiency is an emerging topic of interest and research based on machine learning approaches to language learning and development. The key to the present paper is the combined use of what we refer to as ‘complexity contours’, a series of measurements of indices of L2 proficiency obtained by a computational tool that implements a sliding window technique, and recurrent neural network (RNN) classifiers that adequately capture the sequential information in those contours. We used the EF-Cambridge Open Language Database (Geertzen et al. 2013) with its labelled Common European Framework of Reference (CEFR) levels (Council of Europe 2018) to predict six classes of L2 proficiency levels (A1, A2, B1, B2, C1, C2) in the assessment of writing skills. Our experiments demonstrate that an RNN classifier trained on complexity contours achieves higher classification accuracy than one trained on text-average complexity scores. In a secondary experiment, we determined the relative importance of features from four distinct categories through a sensitivity-based pruning technique. Our approach makes an important contribution to the field of automated identification of language proficiency levels, more specifically, to the increasing efforts towards the empirical validation of CEFR levels.

pdf bib
“Sharks are not the threat humans are”: Argument Component Segmentation in School Student Essays
Tariq Alhindi | Debanjan Ghosh

Argument mining is often addressed by a pipeline method where segmentation of text into argumentative units is conducted first and proceeded by an argument component identification task. In this research, we apply a token-level classification to identify claim and premise tokens from a new corpus of argumentative essays written by middle school students. To this end, we compare a variety of state-of-the-art models such as discrete features and deep learning architectures (e.g., BiLSTM networks and BERT-based architectures) to identify the argument components. We demonstrate that a BERT-based multi-task learning architecture (i.e., token and sentence level classification) adaptively pretrained on a relevant unlabeled dataset obtains the best results.

pdf bib
Using Linguistic Features to Predict the Response Process Complexity Associated with Answering Clinical MCQs
Victoria Yaneva | Daniel Jurich | Le An Ha | Peter Baldwin

This study examines the relationship between the linguistic characteristics of a test item and the complexity of the response process required to answer it correctly. Using data from a large-scale medical licensing exam, clustering methods identified items that were similar with respect to their relative difficulty and relative response-time intensiveness to create low response process complexity and high response process complexity item classes. Interpretable models were used to investigate the linguistic features that best differentiated between these classes from a descriptive and predictive framework. Results suggest that nuanced features such as the number of ambiguous medical terms help explain response process complexity beyond superficial item characteristics such as word count. Yet, although linguistic features carry signal relevant to response process complexity, the classification of individual items remains challenging.


pdf (full)
bib (full)
Proceedings of the 20th Workshop on Biomedical Language Processing

pdf bib
Proceedings of the 20th Workshop on Biomedical Language Processing
Dina Demner-Fushman | Kevin Bretonnel Cohen | Sophia Ananiadou | Junichi Tsujii

pdf bib
Improving BERT Model Using Contrastive Learning for Biomedical Relation Extraction
Peng Su | Yifan Peng | K. Vijay-Shanker

Contrastive learning has been used to learn a high-quality representation of the image in computer vision. However, contrastive learning is not widely utilized in natural language processing due to the lack of a general method of data augmentation for text data. In this work, we explore the method of employing contrastive learning to improve the text representation from the BERT model for relation extraction. The key knob of our framework is a unique contrastive pre-training step tailored for the relation extraction tasks by seamlessly integrating linguistic knowledge into the data augmentation. Furthermore, we investigate how large-scale data constructed from the external knowledge bases can enhance the generality of contrastive pre-training of BERT. The experimental results on three relation extraction benchmark datasets demonstrate that our method can improve the BERT model representation and achieve state-of-the-art performance. In addition, we explore the interpretability of models by showing that BERT with contrastive pre-training relies more on rationales for prediction. Our code and data are publicly available at: https://github.com/AnonymousForNow.

pdf bib
Triplet-Trained Vector Space and Sieve-Based Search Improve Biomedical Concept Normalization
Dongfang Xu | Steven Bethard

Concept normalization, the task of linking textual mentions of concepts to concepts in an ontology, is critical for mining and analyzing biomedical texts. We propose a vector-space model for concept normalization, where mentions and concepts are encoded via transformer networks that are trained via a triplet objective with online hard triplet mining. The transformer networks refine existing pre-trained models, and the online triplet mining makes training efficient even with hundreds of thousands of concepts by sampling training triples within each mini-batch. We introduce a variety of strategies for searching with the trained vector-space model, including approaches that incorporate domain-specific synonyms at search time with no model retraining. Across five datasets, our models that are trained only once on their corresponding ontologies are within 3 points of state-of-the-art models that are retrained for each new domain. Our models can also be trained for each domain, achieving new state-of-the-art on multiple datasets.

pdf bib
Scalable Few-Shot Learning of Robust Biomedical Name Representations
Pieter Fivez | Simon Suster | Walter Daelemans

Recent research on robust representations of biomedical names has focused on modeling large amounts of fine-grained conceptual distinctions using complex neural encoders. In this paper, we explore the opposite paradigm: training a simple encoder architecture using only small sets of names sampled from high-level biomedical concepts. Our encoder post-processes pretrained representations of biomedical names, and is effective for various types of input representations, both domain-specific or unsupervised. We validate our proposed few-shot learning approach on multiple biomedical relatedness benchmarks, and show that it allows for continual learning, where we accumulate information from various conceptual hierarchies to consistently improve encoder performance. Given these findings, we propose our approach as a low-cost alternative for exploring the impact of conceptual distinctions on robust biomedical name representations.

pdf bib
SAFFRON: tranSfer leArning For Food-disease RelatiOn extractioN
Gjorgjina Cenikj | Tome Eftimov | Barbara Koroušić Seljak

The accelerating growth of big data in the biomedical domain, with an endless amount of electronic health records and more than 30 million citations and abstracts in PubMed, introduces the need for automatic structuring of textual biomedical data. In this paper, we develop a method for detecting relations between food and disease entities from raw text. Due to the lack of annotated data on food with respect to health, we explore the feasibility of transfer learning by training BERT-based models on existing datasets annotated for the presence of cause and treat relations among different types of biomedical entities, and using them to recognize the same relations between food and disease entities in a dataset created for the purposes of this study. The best models achieve macro averaged F1 scores of 0.847 and 0.900 for the cause and treat relations, respectively.

pdf bib
Are we there yet? Exploring clinical domain knowledge of BERT models
Madhumita Sushil | Simon Suster | Walter Daelemans

We explore whether state-of-the-art BERT models encode sufficient domain knowledge to correctly perform domain-specific inference. Although BERT implementations such as BioBERT are better at domain-based reasoning than those trained on general-domain corpora, there is still a wide margin compared to human performance on these tasks. To bridge this gap, we explore whether supplementing textual domain knowledge in the medical NLI task: a) by further language model pretraining on the medical domain corpora, b) by means of lexical match algorithms such as the BM25 algorithm, c) by supplementing lexical retrieval with dependency relations, or d) by using a trained retriever module, can push this performance closer to that of humans. We do not find any significant difference between knowledge supplemented classification as opposed to the baseline BERT models, however. This is contrary to the results for evidence retrieval on other tasks such as open domain question answering (QA). By examining the retrieval output, we show that the methods fail due to unreliable knowledge retrieval for complex domain-specific reasoning. We conclude that the task of unsupervised text retrieval to bridge the gap in existing information to facilitate inference is more complex than what the state-of-the-art methods can solve, and warrants extensive research in the future.

pdf bib
Towards BERT-based Automatic ICD Coding: Limitations and Opportunities
Damian Pascual | Sandro Luck | Roger Wattenhofer

Automatic ICD coding is the task of assigning codes from the International Classification of Diseases (ICD) to medical notes. These codes describe the state of the patient and have multiple applications, e.g., computer-assisted diagnosis or epidemiological studies. ICD coding is a challenging task due to the complexity and length of medical notes. Unlike the general trend in language processing, no transformer model has been reported to reach high performance on this task. Here, we investigate in detail ICD coding using PubMedBERT, a state-of-the-art transformer model for biomedical language understanding. We find that the difficulty of fine-tuning the model on long pieces of text is the main limitation for BERT-based models on ICD coding. We run extensive experiments and show that despite the gap with current state-of-the-art, pretrained transformers can reach competitive performance using relatively small portions of text. We point at better methods to aggregate information from long texts as the main need for improving BERT-based ICD coding.

pdf bib
emrKBQA: A Clinical Knowledge-Base Question Answering Dataset
Preethi Raghavan | Jennifer J Liang | Diwakar Mahajan | Rachita Chandra | Peter Szolovits

We present emrKBQA, a dataset for answering physician questions from a structured patient record. It consists of questions, logical forms and answers. The questions and logical forms are generated based on real-world physician questions and are slot-filled and answered from patients in the MIMIC-III KB through a semi-automated process. This community-shared release consists of over 940000 question, logical form and answer triplets with 389 types of questions and ~7.5 paraphrases per question type. We perform experiments to validate the quality of the dataset and set benchmarks for question to logical form learning that helps answer questions on this dataset.

pdf bib
Overview of the MEDIQA 2021 Shared Task on Summarization in the Medical Domain
Asma Ben Abacha | Yassine Mrabet | Yuhao Zhang | Chaitanya Shivade | Curtis Langlotz | Dina Demner-Fushman

The MEDIQA 2021 shared tasks at the BioNLP 2021 workshop addressed three tasks on summarization for medical text: (i) a question summarization task aimed at exploring new approaches to understanding complex real-world consumer health queries, (ii) a multi-answer summarization task that targeted aggregation of multiple relevant answers to a biomedical question into one concise and relevant answer, and (iii) a radiology report summarization task addressing the development of clinically relevant impressions from radiology report findings. Thirty-five teams participated in these shared tasks with sixteen working notes submitted (fifteen accepted) describing a wide variety of models developed and tested on the shared and external datasets. In this paper, we describe the tasks, the datasets, the models and techniques developed by various teams, the results of the evaluation, and a study of correlations among various summarization evaluation measures. We hope that these shared tasks will bring new research and insights in biomedical text summarization and evaluation.

pdf bib
WBI at MEDIQA 2021: Summarizing Consumer Health Questions with Generative Transformers
Mario Sänger | Leon Weber | Ulf Leser

This paper describes our contribution for the MEDIQA-2021 Task 1 question summarization competition. We model the task as conditional generation problem. Our concrete pipeline performs a finetuning of the large pretrained generative transformers PEGASUS (Zhang et al.,2020a) and BART (Lewis et al.,2020). We used the resulting models as strong baselines and experimented with (i) integrating structured knowledge via entity embeddings, (ii) ensembling multiple generative models with the generator-discriminator framework and (iii) disentangling summarization and interrogative prediction to achieve further improvements. Our best performing model, a fine-tuned vanilla PEGASUS, reached the second place in the competition with an ROUGE-2-F1 score of 15.99. We observed that all of our additional measures hurt performance (up to 5.2 pp) on the official test set. In course of a post-hoc experimental analysis which uses a larger validation set results indicate slight performance improvements through the proposed extensions. However, further analysis is need to provide stronger evidence.

pdf bib
paht_nlp @ MEDIQA 2021: Multi-grained Query Focused Multi-Answer Summarization
Wei Zhu | Yilong He | Ling Chai | Yunxiao Fan | Yuan Ni | Guotong Xie | Xiaoling Wang

In this article, we describe our systems for the MEDIQA 2021 Shared Tasks. First, we will describe our method for the second task, Multi-Answer Summarization (MAS). For extractive summarization, two series of methods are applied. The first one follows (CITATION). First a RoBERTa model is first applied to give a local ranking of the candidate sentences. Then a Markov Chain model is applied to evaluate the sentences globally. The second method applies cross-sentence contextualization to improve the local ranking and discard the global ranking step. Our methods achieve the 1st Place in the MAS task. For the question summarization (QS) and radiology report summarization (RRS) tasks, we explore how end-to-end pre-trained seq2seq model perform. A series of tricks for improving the fine-tuning performances are validated.

pdf bib
BDKG at MEDIQA 2021: System Report for the Radiology Report Summarization Task
Songtai Dai | Quan Wang | Yajuan Lyu | Yong Zhu

This paper presents our winning system at the Radiology Report Summarization track of the MEDIQA 2021 shared task. Radiology report summarization automatically summarizes radiology findings into free-text impressions. This year’s task emphasizes the generalization and transfer ability of participating systems. Our system is built upon a pre-trained Transformer encoder-decoder architecture, i.e., PEGASUS, deployed with an additional domain adaptation module to particularly handle the transfer and generalization issue. Heuristics like ensemble and text normalization are also used. Our system is conceptually simple yet highly effective, achieving a ROUGE-2 score of 0.436 on test set and ranked the 1st place among all participating systems.

pdf bib
damo_nlp at MEDIQA 2021: Knowledge-based Preprocessing and Coverage-oriented Reranking for Medical Question Summarization
Yifan He | Mosha Chen | Songfang Huang

Medical question summarization is an important but difficult task, where the input is often complex and erroneous while annotated data is expensive to acquire. We report our participation in the MEDIQA 2021 question summarization task in which we are required to address these challenges. We start from pre-trained conditional generative language models, use knowledge bases to help correct input errors, and rerank single system outputs to boost coverage. Experimental results show significant improvement in string-based metrics.

pdf bib
Stress Test Evaluation of Biomedical Word Embeddings
Vladimir Araujo | Andrés Carvallo | Carlos Aspillaga | Camilo Thorne | Denis Parra

The success of pretrained word embeddings has motivated their use in the biomedical domain, with contextualized embeddings yielding remarkable results in several biomedical NLP tasks. However, there is a lack of research on quantifying their behavior under severe “stress” scenarios. In this work, we systematically evaluate three language models with adversarial examples – automatically constructed tests that allow us to examine how robust the models are. We propose two types of stress scenarios focused on the biomedical named entity recognition (NER) task, one inspired by spelling errors and another based on the use of synonyms for medical terms. Our experiments with three benchmarks show that the performance of the original models decreases considerably, in addition to revealing their weaknesses and strengths. Finally, we show that adversarial training causes the models to improve their robustness and even to exceed the original performance in some cases.

pdf bib
BLAR: Biomedical Local Acronym Resolver
William Hogan | Yoshiki Vazquez Baeza | Yannis Katsis | Tyler Baldwin | Ho-Cheol Kim | Chun-Nan Hsu

NLP has emerged as an essential tool to extract knowledge from the exponentially increasing volumes of biomedical texts. Many NLP tasks, such as named entity recognition and named entity normalization, are especially challenging in the biomedical domain partly because of the prolific use of acronyms. Long names for diseases, bacteria, and chemicals are often replaced by acronyms. We propose Biomedical Local Acronym Resolver (BLAR), a high-performing acronym resolver that leverages state-of-the-art (SOTA) pre-trained language models to accurately resolve local acronyms in biomedical texts. We test BLAR on the Ab3P corpus and achieve state-of-the-art results compared to the current best-performing local acronym resolution algorithms and models.

pdf bib
Claim Detection in Biomedical Twitter Posts
Amelie Wührl | Roman Klinger

Social media contains unfiltered and unique information, which is potentially of great value, but, in the case of misinformation, can also do great harm. With regards to biomedical topics, false information can be particularly dangerous. Methods of automatic fact-checking and fake news detection address this problem, but have not been applied to the biomedical domain in social media yet. We aim to fill this research gap and annotate a corpus of 1200 tweets for implicit and explicit biomedical claims (the latter also with span annotations for the claim phrase). With this corpus, which we sample to be related to COVID-19, measles, cystic fibrosis, and depression, we develop baseline models which detect tweets that contain a claim automatically. Our analyses reveal that biomedical tweets are densely populated with claims (45 % in a corpus sampled to contain 1200 tweets focused on the domains mentioned above). Baseline classification experiments with embedding-based classifiers and BERT-based transfer learning demonstrate that the detection is challenging, however, shows acceptable performance for the identification of explicit expressions of claims. Implicit claim tweets are more challenging to detect.

pdf bib
BioELECTRA:Pretrained Biomedical text Encoder using Discriminators
Kamal raj Kanakarajan | Bhuvana Kundumani | Malaikannan Sankarasubbu

Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. We apply ‘replaced token detection’ pretraining technique proposed by ELECTRA and pretrain a biomedical language model from scratch using biomedical text and vocabulary. We introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA for the Biomedical domain. WE evaluate our model on the BLURB and BLUE biomedical NLP benchmarks. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 different NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset.

pdf bib
Word centrality constrained representation for keyphrase extraction
Zelalem Gero | Joyce Ho

To keep pace with the increased generation and digitization of documents, automated methods that can improve search, discovery and mining of the vast body of literature are essential. Keyphrases provide a concise representation by identifying salient concepts in a document. Various supervised approaches model keyphrase extraction using local context to predict the label for each token and perform much better than the unsupervised counterparts. Unfortunately, this method fails for short documents where the context is unclear. Moreover, keyphrases, which are usually the gist of a document, need to be the central theme. We propose a new extraction model that introduces a centrality constraint to enrich the word representation of a Bidirectional long short-term memory. Performance evaluation on 2 publicly available datasets demonstrate our model outperforms existing state-of-the art approaches.

pdf bib
End-to-end Biomedical Entity Linking with Span-based Dictionary Matching
Shogo Ujiie | Hayate Iso | Shuntaro Yada | Shoko Wakamiya | Eiji Aramaki

Disease name recognition and normalization is a fundamental process in biomedical text mining. Recently, neural joint learning of both tasks has been proposed to utilize the mutual benefits. While this approach achieves high performance, disease concepts that do not appear in the training dataset cannot be accurately predicted. This study introduces a novel end-to-end approach that combines span representations with dictionary-matching features to address this problem. Our model handles unseen concepts by referring to a dictionary while maintaining the performance of neural network-based models. Experiments using two major datasaets demonstrate that our model achieved competitive results with strong baselines, especially for unseen concepts during training.

pdf bib
Word-Level Alignment of Paper Documents with their Electronic Full-Text Counterparts
Mark-Christoph Müller | Sucheta Ghosh | Ulrike Wittig | Maja Rey

We describe a simple procedure for the automatic creation of word-level alignments between printed documents and their respective full-text versions. The procedure is unsupervised, uses standard, off-the-shelf components only, and reaches an F-score of 85.01 in the basic setup and up to 86.63 when using pre- and post-processing. Potential areas of application are manual database curation (incl. document triage) and biomedical expression OCR.

pdf bib
Improving Biomedical Pretrained Language Models with Knowledge
Zheng Yuan | Yijia Liu | Chuanqi Tan | Songfang Huang | Fei Huang

Pretrained language models have shown success in many natural language processing tasks. Many works explore to incorporate the knowledge into the language models. In the biomedical domain, experts have taken decades of effort on building large-scale knowledge bases. For example, UMLS contains millions of entities with their synonyms and defines hundreds of relations among entities. Leveraging this knowledge can benefit a variety of downstream tasks such as named entity recognition and relation extraction. To this end, we propose KeBioLM, a biomedical pretrained language model that explicitly leverages knowledge from the UMLS knowledge bases. Specifically, we extract entities from PubMed abstracts and link them to UMLS. We then train a knowledge-aware language model that firstly applies a text-only encoding layer to learn entity representation and then applies a text-entity fusion encoding to aggregate entity representation. In addition, we add two training objectives as entity detection and entity linking. Experiments on the named entity recognition and relation extraction tasks from the BLURB benchmark demonstrate the effectiveness of our approach. Further analysis on a collected probing dataset shows that our model has better ability to model medical knowledge.

pdf bib
EntityBERT: Entity-centric Masking Strategy for Model Pretraining for the Clinical Domain
Chen Lin | Timothy Miller | Dmitriy Dligach | Steven Bethard | Guergana Savova

Transformer-based neural language models have led to breakthroughs for a variety of natural language processing (NLP) tasks. However, most models are pretrained on general domain data. We propose a methodology to produce a model focused on the clinical domain: continued pretraining of a model with a broad representation of biomedical terminology (PubMedBERT) on a clinical corpus along with a novel entity-centric masking strategy to infuse domain knowledge in the learning process. We show that such a model achieves superior results on clinical extraction tasks by comparing our entity-centric masking strategy with classic random masking on three clinical NLP tasks: cross-domain negation detection, document time relation (DocTimeRel) classification, and temporal relation extraction. We also evaluate our models on the PubMedQA dataset to measure the models’ performance on a non-entity-centric task in the biomedical domain. The language addressed in this work is English.

pdf bib
Contextual explanation rules for neural clinical classifiers
Madhumita Sushil | Simon Suster | Walter Daelemans

Several previous studies on explanation for recurrent neural networks focus on approaches that find the most important input segments for a network as its explanations. In that case, the manner in which these input segments combine with each other to form an explanatory pattern remains unknown. To overcome this, some previous work tries to find patterns (called rules) in the data that explain neural outputs. However, their explanations are often insensitive to model parameters, which limits the scalability of text explanations. To overcome these limitations, we propose a pipeline to explain RNNs by means of decision lists (also called rules) over skipgrams. For evaluation of explanations, we create a synthetic sepsis-identification dataset, as well as apply our technique on additional clinical and sentiment analysis datasets. We find that our technique persistently achieves high explanation fidelity and qualitatively interpretable rules.

pdf bib
Exploring Word Segmentation and Medical Concept Recognition for Chinese Medical Texts
Yang Liu | Yuanhe Tian | Tsung-Hui Chang | Song Wu | Xiang Wan | Yan Song

Chinese word segmentation (CWS) and medical concept recognition are two fundamental tasks to process Chinese electronic medical records (EMRs) and play important roles in downstream tasks for understanding Chinese EMRs. One challenge to these tasks is the lack of medical domain datasets with high-quality annotations, especially medical-related tags that reveal the characteristics of Chinese EMRs. In this paper, we collected a Chinese EMR corpus, namely, ACEMR, with human annotations for Chinese word segmentation and EMR-related tags. On the ACEMR corpus, we run well-known models (i.e., BiLSTM, BERT, and ZEN) and existing state-of-the-art systems (e.g., WMSeg and TwASP) for CWS and medical concept recognition. Experimental results demonstrate the necessity of building a dedicated medical dataset and show that models that leverage extra resources achieve the best performance for both tasks, which provides certain guidance for future studies on model selection in the medical domain.

pdf bib
BioM-Transformers: Building Large Biomedical Language Models with BERT, ALBERT and ELECTRA
Sultan Alrowili | Vijay Shanker

The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models.

pdf bib
Semi-Supervised Language Models for Identification of Personal Health Experiential from Twitter Data: A Case for Medication Effects
Minghao Zhu | Keyuan Jiang

First-hand experience related to any changes of one’s health condition and understanding such experience can play an important role in advancing medical science and healthcare. Monitoring the safe use of medication drugs is an important task of pharmacovigilance, and first-hand experience of effects about consumers’ medication intake can be valuable to gain insight into how our human body reacts to medications. Social media have been considered as a possible alternative data source for gathering personal experience with medications posted by users. Identifying personal experience tweets is a challenging classification task, and efforts have made to tackle the challenges using supervised approaches requiring annotated data. There exists abundance of unlabeled Twitter data, and being able to use such data for training without suffering in classification performance is of great value, which can reduce the cost of laborious annotation process. We investigated two semi-supervised learning methods, with different mixes of labeled and unlabeled data in the training set, to understand the impact on classification performance. Our results from both pseudo-label and consistency regularization methods show that both methods generated a noticeable improvement in F1 score when the labeled set was small, and consistency regularization could still provide a small gain even a larger labeled set was used.

pdf bib
Context-aware query design combines knowledge and data for efficient reading and reasoning
Emilee Holtzapple | Brent Cochran | Natasa Miskov-Zivanov

The amount of biomedical literature has vastly increased over the past few decades. As a result, the sheer quantity of accessible information is overwhelming, and complicates manual information retrieval. Automated methods seek to speed up information retrieval from biomedical literature. However, such automated methods are still too time-intensive to survey all existing biomedical literature. We present a methodology for automatically generating literature queries that select relevant papers based on biological data. By using differentially expressed genes to inform our literature searches, we focus information extraction on mechanistic signaling details that are crucial for the disease or context of interest.

pdf bib
Measuring the relative importance of full text sections for information retrieval from scientific literature.
Lana Yeganova | Won Gyu Kim | Donald Comeau | W John Wilbur | Zhiyong Lu

With the growing availability of full-text articles, integrating abstracts and full texts of documents into a unified representation is essential for comprehensive search of scientific literature. However, previous studies have shown that naïvely merging abstracts with full texts of articles does not consistently yield better performance. Balancing the contribution of query terms appearing in the abstract and in sections of different importance in full text articles remains a challenge both with traditional bag-of-words IR approaches and for neural retrieval methods. In this work we establish the connection between the BM25 score of a query term appearing in a section of a full text document and the probability of that document being clicked or identified as relevant. Probability is computed using Pool Adjacent Violators (PAV), an isotonic regression algorithm, providing a maximum likelihood estimate based on the observed data. Using this probabilistic transformation of BM25 scores we show an improved performance on the PubMed Click dataset developed and presented in this study, as well as the 2007 TREC Genomics collection.

pdf bib
UCSD-Adobe at MEDIQA 2021: Transfer Learning and Answer Sentence Selection for Medical Summarization
Khalil Mrini | Franck Dernoncourt | Seunghyun Yoon | Trung Bui | Walter Chang | Emilia Farcas | Ndapa Nakashole

In this paper, we describe our approach to question summarization and multi-answer summarization in the context of the 2021 MEDIQA shared task (Ben Abacha et al., 2021). We propose two kinds of transfer learning for the abstractive summarization of medical questions. First, we train on HealthCareMagic, a large question summarization dataset collected from an online healthcare service platform. Second, we leverage the ability of the BART encoder-decoder architecture to model both generation and classification tasks to train on the task of Recognizing Question Entailment (RQE) in the medical domain. We show that both transfer learning methods combined achieve the highest ROUGE scores. Finally, we cast the question-driven extractive summarization of multiple relevant answer documents as an Answer Sentence Selection (AS2) problem. We show how we can preprocess the MEDIQA-AnS dataset such that it can be trained in an AS2 setting. Our AS2 model is able to generate extractive summaries achieving high ROUGE scores.

pdf bib
ChicHealth @ MEDIQA 2021: Exploring the limits of pre-trained seq2seq models for medical summarization
Liwen Xu | Yan Zhang | Lei Hong | Yi Cai | Szui Sung

In this article, we will describe our system for MEDIQA2021 shared tasks. First, we will describe the method of the second task, multiple answer summary (MAS). For extracting abstracts, we follow the rules of (CITATION). First, the candidate sentences are roughly estimated by using the Roberta model. Then the Markov chain model is used to evaluate the sentences in a fine-grained manner. Our team won the first place in overall performance, with the fourth place in MAS task, the seventh place in RRS task and the eleventh place in QS task. For the QS and RRS tasks, we investigate the performanceS of the end-to-end pre-trained seq2seq model. Experiments show that the methods of adversarial training and reverse translation are beneficial to improve the fine tuning performance.

pdf bib
NCUEE-NLP at MEDIQA 2021: Health Question Summarization Using PEGASUS Transformers
Lung-Hao Lee | Po-Han Chen | Yu-Xiang Zeng | Po-Lei Lee | Kuo-Kai Shyu

This study describes the model design of the NCUEE-NLP system for the MEDIQA challenge at the BioNLP 2021 workshop. We use the PEGASUS transformers and fine-tune the downstream summarization task using our collected and processed datasets. A total of 22 teams participated in the consumer health question summarization task of MEDIQA 2021. Each participating team was allowed to submit a maximum of ten runs. Our best submission, achieving a ROUGE2-F1 score of 0.1597, ranked third among all 128 submissions.

pdf bib
SB_NITK at MEDIQA 2021: Leveraging Transfer Learning for Question Summarization in Medical Domain
Spandana Balumuri | Sony Bachina | Sowmya Kamath S

Recent strides in the healthcare domain, have resulted in vast quantities of streaming data available for use for building intelligent knowledge-based applications. However, the challenges introduced to the huge volume, velocity of generation, variety and variability of this medical data have to be adequately addressed. In this paper, we describe the model and results for our submission at MEDIQA 2021 Question Summarization shared task. In order to improve the performance of summarization of consumer health questions, our method explores the use of transfer learning to utilize the knowledge of NLP transformers like BART, T5 and PEGASUS. The proposed models utilize the knowledge of pre-trained NLP transformers to achieve improved results when compared to conventional deep learning models such as LSTM, RNN etc. Our team SB_NITK ranked 12th among the total 22 submissions in the official final rankings. Our BART based model achieved a ROUGE-2 F1 score of 0.139.

pdf bib
Optum at MEDIQA 2021: Abstractive Summarization of Radiology Reports using simple BART Finetuning
Ravi Kondadadi | Sahil Manchanda | Jason Ngo | Ronan McCormack

This paper describes experiments undertaken and their results as part of the BioNLP MEDIQA 2021 challenge. We participated in Task 3: Radiology Report Summarization. Multiple runs were submitted for evaluation, from solutions leveraging transfer learning from pre-trained transformer models, which were then fine tuned on a subset of MIMIC-CXR, for abstractive report summarization. The task was evaluated using ROUGE and our best performing system obtained a ROUGE-2 score of 0.392.

pdf bib
QIAI at MEDIQA 2021: Multimodal Radiology Report Summarization
Jean-Benoit Delbrouck | Cassie Zhang | Daniel Rubin

This paper describes the solution of the QIAI lab sent to the Radiology Report Summarization (RRS) challenge at MEDIQA 2021. This paper aims to investigate whether using multimodality during training improves the summarizing performances of the model at test-time. Our preliminary results shows that taking advantage of the visual features from the x-rays associated to the radiology reports leads to higher evaluation metrics compared to a text-only baseline system. These improvements are reported according to the automatic evaluation metrics METEOR, BLEU and ROUGE scores. Our experiments can be fully replicated at the following address: https://github.com/jbdel/vilmedic.

pdf bib
NLM at MEDIQA 2021: Transfer Learning-based Approaches for Consumer Question and Multi-Answer Summarization
Shweta Yadav | Mourad Sarrouti | Deepak Gupta

The quest for seeking health information has swamped the web with consumers’ healthrelated questions, which makes the need for efficient and reliable question answering systems more pressing. The consumers’ questions, however, are very descriptive and contain several peripheral information (like patient’s medical history, demographic information, etc.), that are often not required for answering the question. Furthermore, it contributes to the challenges of understanding natural language questions for automatic answer retrieval. Also, it is crucial to provide the consumers with the exact and relevant answers, rather than the entire pool of answer documents to their question. One of the cardinal tasks in achieving robust consumer health question answering systems is the question summarization and multi-document answer summarization. This paper describes the participation of the U.S. National Library of Medicine (NLM) in Consumer Question and Multi-Answer Summarization tasks of the MEDIQA 2021 challenge at NAACL-BioNLP workshop. In this work, we exploited the capabilities of pre-trained transformer models and introduced a transfer learning approach for the abstractive Question Summarization and extractive Multi-Answer Summarization tasks by first pre-training our model on a task-specific summarization dataset followed by fine-tuning it for both the tasks via incorporating medical entities. We achieved the second, sixth and the fourth position for the Question Summarization task in terms ROUGE-1, ROUGE-2 and ROUGE-L scores respectively.

pdf bib
IBMResearch at MEDIQA 2021: Toward Improving Factual Correctness of Radiology Report Abstractive Summarization
Diwakar Mahajan | Ching-Huei Tsou | Jennifer J Liang

Although recent advances in abstractive summarization systems have achieved high scores on standard natural language metrics like ROUGE, their lack of factual consistency remains an open challenge for their use in sensitive real-world settings such as clinical practice. In this work, we propose a novel approach to improve factual correctness of a summarization system by re-ranking the candidate summaries based on a factual vector of the summary. We applied this process during our participation in MEDIQA 2021 Task 3: Radiology Report Summarization, where the task is to generate an impression summary of a radiology report, given findings and background as inputs. In our system, we first used a transformer-based encoder-decoder model to generate top N candidate impression summaries for a report, then trained another transformer-based model to predict a 14-observations-vector of the impression based on the findings and background of the report, and finally, utilized this vector to re-rank the candidate summaries. We also employed a source-specific ensembling technique to accommodate for distinct writing styles from different radiology report sources. Our approach yielded 2nd place in the challenge.

pdf bib
UETrice at MEDIQA 2021: A Prosper-thy-neighbour Extractive Multi-document Summarization Model
Duy-Cat Can | Quoc-An Nguyen | Quoc-Hung Duong | Minh-Quang Nguyen | Huy-Son Nguyen | Linh Nguyen Tran Ngoc | Quang-Thuy Ha | Mai-Vu Tran

This paper describes a system developed to summarize multiple answers challenge in the MEDIQA 2021 shared task collocated with the BioNLP 2021 Workshop. We propose an extractive summarization architecture based on several scores and state-of-the-art techniques. We also present our novel prosper-thy-neighbour strategies to improve performance. Our model has been proven to be effective with the best ROUGE-1/ROUGE-L scores, being the shared task runner up by ROUGE-2 F1 score (over 13 participated teams).

pdf bib
MNLP at MEDIQA 2021: Fine-Tuning PEGASUS for Consumer Health Question Summarization
Jooyeon Lee | Huong Dang | Ozlem Uzuner | Sam Henry

This paper details a Consumer Health Question (CHQ) summarization model submitted to MEDIQA 2021 for shared task 1: Question Summarization. Many CHQs are composed of multiple sentences with typos or unnecessary information, which can interfere with automated question answering systems. Question summarization mitigates this issue by removing this unnecessary information, aiding automated systems in generating a more accurate summary. Our summarization approach focuses on applying multiple pre-processing techniques, including question focus identification on the input and the development of an ensemble method to combine question focus with an abstractive summarization method. We use the state-of-art abstractive summarization model, PEGASUS (Pre-training with Extracted Gap-sentences for Abstractive Summarization), to generate abstractive summaries. Our experiments show that using our ensemble method, which combines abstractive summarization with question focus identification, improves performance over using summarization alone. Our model shows a ROUGE-2 F-measure of 11.14% against the official test dataset.

pdf bib
UETfishes at MEDIQA 2021: Standing-on-the-Shoulders-of-Giants Model for Abstractive Multi-answer Summarization
Hoang-Quynh Le | Quoc-An Nguyen | Quoc-Hung Duong | Minh-Quang Nguyen | Huy-Son Nguyen | Tam Doan Thanh | Hai-Yen Thi Vuong | Trang M. Nguyen

This paper describes a system developed to summarize multiple answers challenge in the MEDIQA 2021 shared task collocated with the BioNLP 2021 Workshop. We present an abstractive summarization model based on BART, a denoising auto-encoder for pre-training sequence-to-sequence models. As focusing on the summarization of answers to consumer health questions, we propose a query-driven filtering phase to choose useful information from the input document automatically. Our approach achieves potential results, rank no.2 (evaluated on extractive references) and no.3 (evaluated on abstractive references) in the final evaluation.


bib (full) Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

pdf bib
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
Jasmijn Bastings | Yonatan Belinkov | Emmanuel Dupoux | Mario Giulianelli | Dieuwke Hupkes | Yuval Pinter | Hassan Sajjad

pdf bib
To what extent do human explanations of model behavior align with actual model behavior?
Grusha Prasad | Yixin Nie | Mohit Bansal | Robin Jia | Douwe Kiela | Adina Williams

Given the increasingly prominent role NLP models (will) play in our lives, it is important for human expectations of model behavior to align with actual model behavior. Using Natural Language Inference (NLI) as a case study, we investigate the extent to which human-generated explanations of models’ inference decisions align with how models actually make these decisions. More specifically, we define three alignment metrics that quantify how well natural language explanations align with model sensitivity to input words, as measured by integrated gradients. Then, we evaluate eight different models (the base and large versions of BERT,RoBERTa and ELECTRA, as well as anRNN and bag-of-words model), and find that the BERT-base model has the highest alignment with human-generated explanations, for all alignment metrics. Focusing in on transformers, we find that the base versions tend to have higher alignment with human-generated explanations than their larger counterparts, suggesting that increasing the number of model parameters leads, in some cases, to worse alignment with human explanations. Finally, we find that a model’s alignment with human explanations is not predicted by the model’s accuracy, suggesting that accuracy and alignment are complementary ways to evaluate models.

pdf bib
Test Harder than You Train: Probing with Extrapolation Splits
Jenny Kunz | Marco Kuhlmann

Previous work on probing word representations for linguistic knowledge has focused on interpolation tasks. In this paper, we instead analyse probes in an extrapolation setting, where the inputs at test time are deliberately chosen to be ‘harder’ than the training examples. We argue that such an analysis can shed further light on the open question whether probes actually decode linguistic knowledge, or merely learn the diagnostic task from shallow features. To quantify the hardness of an example, we consider scoring functions based on linguistic, statistical, and learning-related criteria, all of which are applicable to a broad range of NLP tasks. We discuss the relative merits of these criteria in the context of two syntactic probing tasks, part-of-speech tagging and syntactic dependency labelling. From our theoretical and experimental analysis, we conclude that distance-based and hard statistical criteria show the clearest differences between interpolation and extrapolation settings, while at the same time being transparent, intuitive, and easy to control.

pdf bib
Does External Knowledge Help Explainable Natural Language Inference? Automatic Evaluation vs. Human Ratings
Hendrik Schuff | Hsiu-Yu Yang | Heike Adel | Ngoc Thang Vu

Natural language inference (NLI) requires models to learn and apply commonsense knowledge. These reasoning abilities are particularly important for explainable NLI systems that generate a natural language explanation in addition to their label prediction. The integration of external knowledge has been shown to improve NLI systems, here we investigate whether it can also improve their explanation capabilities. For this, we investigate different sources of external knowledge and evaluate the performance of our models on in-domain data as well as on special transfer datasets that are designed to assess fine-grained reasoning capabilities. We find that different sources of knowledge have a different effect on reasoning abilities, for example, implicit knowledge stored in language models can hinder reasoning on numbers and negations. Finally, we conduct the largest and most fine-grained explainable NLI crowdsourcing study to date. It reveals that even large differences in automatic performance scores do neither reflect in human ratings of label, explanation, commonsense nor grammar correctness.

pdf bib
The Language Model Understood the Prompt was Ambiguous: Probing Syntactic Uncertainty Through Generation
Laura Aina | Tal Linzen

Temporary syntactic ambiguities arise when the beginning of a sentence is compatible with multiple syntactic analyses. We inspect to which extent neural language models (LMs) exhibit uncertainty over such analyses when processing temporarily ambiguous inputs, and how that uncertainty is modulated by disambiguating cues. We probe the LM’s expectations by generating from it: we use stochastic decoding to derive a set of sentence completions, and estimate the probability that the LM assigns to each interpretation based on the distribution of parses across completions. Unlike scoring-based methods for targeted syntactic evaluation, this technique makes it possible to explore completions that are not hypothesized in advance by the researcher. We apply this method to study the behavior of two LMs (GPT2 and an LSTM) on three types of temporary ambiguity, using materials from human sentence processing experiments. We find that LMs can track multiple analyses simultaneously; the degree of uncertainty varies across constructions and contexts. As a response to disambiguating cues, the LMs often select the correct interpretation, but occasional errors point to potential areas of improvement

pdf bib
On the Limits of Minimal Pairs in Contrastive Evaluation
Jannis Vamvas | Rico Sennrich

Minimal sentence pairs are frequently used to analyze the behavior of language models. It is often assumed that model behavior on contrastive pairs is predictive of model behavior at large. We argue that two conditions are necessary for this assumption to hold: First, a tested hypothesis should be well-motivated, since experiments show that contrastive evaluation can lead to false positives. Secondly, test data should be chosen such as to minimize distributional discrepancy between evaluation time and deployment time. For a good approximation of deployment-time decoding, we recommend that minimal pairs are created based on machine-generated text, as opposed to human-written references. We present a contrastive evaluation suite for English–German MT that implements this recommendation.

pdf bib
What Models Know About Their Attackers: Deriving Attacker Information From Latent Representations
Zhouhang Xie | Jonathan Brophy | Adam Noack | Wencong You | Kalyani Asthana | Carter Perkins | Sabrina Reis | Zayd Hammoudeh | Daniel Lowd | Sameer Singh

Adversarial attacks curated against NLP models are increasingly becoming practical threats. Although various methods have been developed to detect adversarial attacks, securing learning-based NLP systems in practice would require more than identifying and evading perturbed instances. To address these issues, we propose a new set of adversary identification tasks, Attacker Attribute Classification via Textual Analysis (AACTA), that attempts to obtain more detailed information about the attackers from adversarial texts. Specifically, given a piece of adversarial text, we hope to accomplish tasks such as localizing perturbed tokens, identifying the attacker’s access level to the target model, determining the evasion mechanism imposed, and specifying the perturbation type employed by the attacking algorithm. Our contributions are as follows: we formalize the task of classifying attacker attributes, and create a benchmark on various target models from sentiment classification and abuse detection domains. We show that signals from BERT models and target models can be used to train classifiers that reveal the properties of the attacking algorithms. We demonstrate that adversarial attacks leave interpretable traces in both feature spaces of pre-trained language models and target models, making AACTA a promising direction towards more trustworthy NLP systems.

pdf bib
ALL Dolphins Are Intelligent and SOME Are Friendly: Probing BERT for Nouns’ Semantic Properties and their Prototypicality
Marianna Apidianaki | Aina Garí Soler

Large scale language models encode rich commonsense knowledge acquired through exposure to massive data during pre-training, but their understanding of entities and their semantic properties is unclear. We probe BERT (Devlin et al., 2019) for the properties of English nouns as expressed by adjectives that do not restrict the reference scope of the noun they modify (as in “red car”), but instead emphasise some inherent aspect (“red strawberry”). We base our study on psycholinguistics datasets that capture the association strength between nouns and their semantic features. We probe BERT using cloze tasks and in a classification setting, and show that the model has marginal knowledge of these features and their prevalence as expressed in these datasets. We discuss factors that make evaluation challenging and impede drawing general conclusions about the models’ knowledge of noun properties. Finally, we show that when tested in a fine-tuning setting addressing entailment, BERT successfully leverages the information needed for reasoning about the meaning of adjective-noun constructions outperforming previous methods.

pdf bib
ProSPer: Probing Human and Neural Network Language Model Understanding of Spatial Perspective
Tessa Masis | Carolyn Anderson

Understanding perspectival language is important for applications like dialogue systems and human-robot interaction. We propose a probe task that explores how well language models understand spatial perspective. We present a dataset for evaluating perspective inference in English, ProSPer, and use it to explore how humans and Transformer-based language models infer perspective. Although the best bidirectional model performs similarly to humans, they display different strengths: humans outperform neural networks in conversational contexts, while RoBERTa excels at written genres.

pdf bib
Can Transformers Jump Around Right in Natural Language? Assessing Performance Transfer from SCAN
Rahma Chaabouni | Roberto Dessì | Eugene Kharitonov

Despite their failure to solve the compositional SCAN dataset, seq2seq architectures still achieve astonishing success on more practical tasks. This observation pushes us to question the usefulness of SCAN-style compositional generalization in realistic NLP tasks. In this work, we study the benefit that such compositionality brings about to several machine translation tasks. We present several focused modifications of Transformer that greatly improve generalization capabilities on SCAN and select one that remains on par with a vanilla Transformer on a standard machine translation (MT) task. Next, we study its performance in low-resource settings and on a newly introduced distribution-shifted English-French translation task. Overall, we find that improvements of a SCAN-capable model do not directly transfer to the resource-rich MT setup. In contrast, in the low-resource setup, general modifications lead to an improvement of up to 13.1% BLEU score w.r.t. a vanilla Transformer. Similarly, an improvement of 14% in an accuracy-based metric is achieved in the introduced compositional English-French translation task. This provides experimental evidence that the compositional generalization assessed in SCAN is particularly useful in resource-starved and domain-shifted scenarios.

pdf bib
Transferring Knowledge from Vision to Language: How to Achieve it and how to Measure it?
Tobias Norlund | Lovisa Hagström | Richard Johansson

Large language models are known to suffer from the hallucination problem in that they are prone to output statements that are false or inconsistent, indicating a lack of knowledge. A proposed solution to this is to provide the model with additional data modalities that complements the knowledge obtained through text. We investigate the use of visual data to complement the knowledge of large language models by proposing a method for evaluating visual knowledge transfer to text for uni- or multimodal language models. The method is based on two steps, 1) a novel task querying for knowledge of memory colors, i.e. typical colors of well-known objects, and 2) filtering of model training data to clearly separate knowledge contributions. Additionally, we introduce a model architecture that involves a visual imagination step and evaluate it with our proposed method. We find that our method can successfully be used to measure visual knowledge transfer capabilities in models and that our novel model architecture shows promising results for leveraging multimodal knowledge in a unimodal setting.

pdf bib
Discrete representations in neural models of spoken language
Bertrand Higy | Lieke Gelderloos | Afra Alishahi | Grzegorz Chrupała

The distributed and continuous representations used by neural networks are at odds with representations employed in linguistics, which are typically symbolic. Vector quantization has been proposed as a way to induce discrete neural representations that are closer in nature to their linguistic counterparts. However, it is not clear which metrics are the best-suited to analyze such discrete representations. We compare the merits of four commonly used metrics in the context of weakly supervised models of spoken language. We compare the results they show when applied to two different models, while systematically studying the effect of the placement and size of the discretization layer. We find that different evaluation regimes can give inconsistent results. While we can attribute them to the properties of the different metrics in most cases, one point of concern remains: the use of minimal pairs of phoneme triples as stimuli disadvantages larger discrete unit inventories, unlike metrics applied to complete utterances. Furthermore, while in general vector quantization induces representations that correlate with units posited in linguistics, the strength of this correlation is only moderate.

pdf bib
Word Equations: Inherently Interpretable Sparse Word Embeddings through Sparse Coding
Adly Templeton

Word embeddings are a powerful natural language processing technique, but they are extremely difficult to interpret. To enable interpretable NLP models, we create vectors where each dimension is inherently interpretable. By inherently interpretable, we mean a system where each dimension is associated with some human-understandable hint that can describe the meaning of that dimension. In order to create more interpretable word embeddings, we transform pretrained dense word embeddings into sparse embeddings. These new embeddings are inherently interpretable: each of their dimensions is created from and represents a natural language word or specific grammatical concept. We construct these embeddings through sparse coding, where each vector in the basis set is itself a word embedding. Therefore, each dimension of our sparse vectors corresponds to a natural language word. We also show that models trained using these sparse embeddings can achieve good performance and are more interpretable in practice, including through human evaluations.

pdf bib
A howling success or a working sea? Testing what BERT knows about metaphors
Paolo Pedinotti | Eliana Di Palma | Ludovica Cerini | Alessandro Lenci

Metaphor is a widespread linguistic and cognitive phenomenon that is ruled by mechanisms which have received attention in the literature. Transformer Language Models such as BERT have brought improvements in metaphor-related tasks. However, they have been used only in application contexts, while their knowledge of the phenomenon has not been analyzed. To test what BERT knows about metaphors, we challenge it on a new dataset that we designed to test various aspects of this phenomenon such as variations in linguistic structure, variations in conventionality, the boundaries of the plausibility of a metaphor and the interpretations that we attribute to metaphoric expressions. Results bring out some tendencies that suggest that the model can reproduce some human intuitions about metaphors.

pdf bib
How Length Prediction Influence the Performance of Non-Autoregressive Translation?
Minghan Wang | Guo Jiaxin | Yuxia Wang | Yimeng Chen | Su Chang | Hengchao Shang | Min Zhang | Shimin Tao | Hao Yang

Length prediction is a special task in a series of NAT models where target length has to be determined before generation. However, the performance of length prediction and its influence on translation quality has seldom been discussed. In this paper, we present comprehensive analyses on length prediction task of NAT, aiming to find the factors that influence performance, as well as how it associates with translation quality. We mainly perform experiments based on Conditional Masked Language Model (CMLM) (Ghazvininejad et al., 2019), a representative NAT model, and evaluate it on two language pairs, En-De and En-Ro. We draw two conclusions: 1) The performance of length prediction is mainly influenced by properties of language pairs such as alignment pattern, word order or intrinsic length ratio, and is also affected by the usage of knowledge distilled data. 2) There is a positive correlation between the performance of the length prediction and the BLEU score.

pdf bib
On the Language-specificity of Multilingual BERT and the Impact of Fine-tuning
Marc Tanti | Lonneke van der Plas | Claudia Borg | Albert Gatt

Recent work has shown evidence that the knowledge acquired by multilingual BERT (mBERT) has two components: a language-specific and a language-neutral one. This paper analyses the relationship between them, in the context of fine-tuning on two tasks – POS tagging and natural language inference – which require the model to bring to bear different degrees of language-specific knowledge. Visualisations reveal that mBERT loses the ability to cluster representations by language after fine-tuning, a result that is supported by evidence from language identification experiments. However, further experiments on ‘unlearning’ language-specific representations using gradient reversal and iterative adversarial learning are shown not to add further improvement to the language-independent component over and above the effect of fine-tuning. The results presented here suggest that the process of fine-tuning causes a reorganisation of the model’s limited representational capacity, enhancing language-independent representations at the expense of language-specific ones.

pdf bib
Relating Neural Text Degeneration to Exposure Bias
Ting-Rui Chiang | Yun-Nung Chen

This work focuses on relating two mysteries in neural-based text generation: exposure bias, and text degeneration. Despite the long time since exposure bias was mentioned and the numerous studies for its remedy, to our knowledge, its impact on text generation has not yet been verified. Text degeneration is a problem that the widely-used pre-trained language model GPT-2 was recently found to suffer from (Holtzman et al., 2020). Motivated by the unknown causation of the text degeneration, in this paper we attempt to relate these two mysteries. Specifically, we first qualitatively and quantitatively identify mistakes made before text degeneration occurs. Then we investigate the significance of the mistakes by inspecting the hidden states in GPT-2. Our results show that text degeneration is likely to be partly caused by exposure bias. We also study the self-reinforcing mechanism of text degeneration, explaining why the mistakes amplify. In sum, our study provides a more concrete foundation for further investigation on exposure bias and text degeneration problems.

pdf bib
Efficient Explanations from Empirical Explainers
Robert Schwarzenberg | Nils Feldhus | Sebastian Möller

Amid a discussion about Green AI in which we see explainability neglected, we explore the possibility to efficiently approximate computationally expensive explainers. To this end, we propose feature attribution modelling with Empirical Explainers. Empirical Explainers learn from data to predict the attribution maps of expensive explainers. We train and test Empirical Explainers in the language domain and find that they model their expensive counterparts surprisingly well, at a fraction of the cost. They could thus mitigate the computational burden of neural explanations significantly, in applications that tolerate an approximation error.

pdf bib
Variation and generality in encoding of syntactic anomaly information in sentence embeddings
Qinxuan Wu | Allyson Ettinger

While sentence anomalies have been applied periodically for testing in NLP, we have yet to establish a picture of the precise status of anomaly information in representations from NLP models. In this paper we aim to fill two primary gaps, focusing on the domain of syntactic anomalies. First, we explore fine-grained differences in anomaly encoding by designing probing tasks that vary the hierarchical level at which anomalies occur in a sentence. Second, we test not only models’ ability to detect a given anomaly, but also the generality of the detected anomaly signal, by examining transfer between distinct anomaly types. Results suggest that all models encode some information supporting anomaly detection, but detection performance varies between anomalies, and only representations from more re- cent transformer models show signs of generalized knowledge of anomalies. Follow-up analyses support the notion that these models pick up on a legitimate, general notion of sentence oddity, while coarser-grained word position information is likely also a contributor to the observed anomaly detection.

pdf bib
Enhancing Interpretable Clauses Semantically using Pretrained Word Representation
Rohan Kumar Yadav | Lei Jiao | Ole-Christoffer Granmo | Morten Goodwin

Tsetlin Machine (TM) is an interpretable pattern recognition algorithm based on propositional logic, which has demonstrated competitive performance in many Natural Language Processing (NLP) tasks, including sentiment analysis, text classification, and Word Sense Disambiguation. To obtain human-level interpretability, legacy TM employs Boolean input features such as bag-of-words (BOW). However, the BOW representation makes it difficult to use any pre-trained information, for instance, word2vec and GloVe word representations. This restriction has constrained the performance of TM compared to deep neural networks (DNNs) in NLP. To reduce the performance gap, in this paper, we propose a novel way of using pre-trained word representations for TM. The approach significantly enhances the performance and interpretability of TM. We achieve this by extracting semantically related words from pre-trained word representations as input features to the TM. Our experiments show that the accuracy of the proposed approach is significantly higher than the previous BOW-based TM, reaching the level of DNN-based models.

pdf bib
Analyzing BERT’s Knowledge of Hypernymy via Prompting
Michael Hanna | David Mareček

The high performance of large pretrained language models (LLMs) such as BERT on NLP tasks has prompted questions about BERT’s linguistic capabilities, and how they differ from humans’. In this paper, we approach this question by examining BERT’s knowledge of lexical semantic relations. We focus on hypernymy, the “is-a” relation that relates a word to a superordinate category. We use a prompting methodology to simply ask BERT what the hypernym of a given word is. We find that, in a setting where all hypernyms are guessable via prompting, BERT knows hypernyms with up to 57% accuracy. Moreover, BERT with prompting outperforms other unsupervised models for hypernym discovery even in an unconstrained scenario. However, BERT’s predictions and performance on a dataset containing uncommon hyponyms and hypernyms indicate that its knowledge of hypernymy is still limited.

pdf bib
An in-depth look at Euclidean disk embeddings for structure preserving parsing
Federico Fancellu | Lan Xiao | Allan Jepson | Afsaneh Fazly

Preserving the structural properties of trees or graphs when embedding them into a metric space allows for a high degree of interpretability, and has been shown beneficial for downstream tasks (e.g., hypernym detection, natural language inference, multimodal retrieval). However, whereas the majority of prior work looks at using structure-preserving embeddings when encoding a structure given as input, e.g., WordNet (Fellbaum, 1998), there is little exploration on how to use such embeddings when predicting one. We address this gap for two structure generation tasks, namely dependency and semantic parsing. We test the applicability of disk embeddings (Suzuki et al., 2019) that has been proposed for embedding Directed Acyclic Graphs (DAGs) but has not been tested on tasks that generate such structures. Our experimental results show that for both tasks the original disk embedding formulation leads to much worse performance when compared to non-structure-preserving baselines. We propose enhancements to this formulation and show that they almost close the performance gap for dependency parsing. However, the gap still remains notable for semantic parsing due to the complexity of meaning representation graphs, suggesting a challenge for generating interpretable semantic parse representations.

pdf bib
Training Dynamic based data filtering may not work for NLP datasets
Arka Talukdar | Monika Dagar | Prachi Gupta | Varun Menon

The recent increase in dataset size has brought about significant advances in natural language understanding. These large datasets are usually collected through automation (search engines or web crawlers) or crowdsourcing which inherently introduces incorrectly labeled data. Training on these datasets leads to memorization and poor generalization. Thus, it is pertinent to develop techniques that help in the identification and isolation of mislabelled data. In this paper, we study the applicability of the Area Under the Margin (AUM) metric to identify and remove/rectify mislabelled examples in NLP datasets. We find that mislabelled samples can be filtered using the AUM metric in NLP datasets but it also removes a significant number of correctly labeled points and leads to the loss of a large amount of relevant language information. We show that models rely on the distributional information instead of relying on syntactic and semantic representations.

pdf bib
Multi-Layer Random Perturbation Training for improving Model Generalization Efficiently
Lis Kanashiro Pereira | Yuki Taya | Ichiro Kobayashi

We propose a simple yet effective Multi-Layer RAndom Perturbation Training algorithm (RAPT) to enhance model robustness and generalization. The key idea is to apply randomly sampled noise to each input to generate label-preserving artificial input points. To encourage the model to generate more diverse examples, the noise is added to a combination of the model layers. Then, our model regularizes the posterior difference between clean and noisy inputs. We apply RAPT towards robust and efficient BERT training, and conduct comprehensive fine-tuning experiments on GLUE tasks. Our results show that RAPT outperforms the standard fine-tuning approach, and adversarial training method, yet with 22% less training time.

pdf bib
Screening Gender Transfer in Neural Machine Translation
Guillaume Wisniewski | Lichao Zhu | Nicolas Bailler | François Yvon

This paper aims at identifying the information flow in state-of-the-art machine translation systems, taking as example the transfer of gender when translating from French into English. Using a controlled set of examples, we experiment several ways to investigate how gender information circulates in a encoder-decoder architecture considering both probing techniques as well as interventions on the internal representations used in the MT system. Our results show that gender information can be found in all token representations built by the encoder and the decoder and lead us to conclude that there are multiple pathways for gender transfer.

pdf bib
What BERT Based Language Model Learns in Spoken Transcripts: An Empirical Study
Ayush Kumar | Mukuntha Narayanan Sundararaman | Jithendra Vepa

Language Models (LMs) have been ubiquitously leveraged in various tasks including spoken language understanding (SLU). Spoken language requires careful understanding of speaker interactions, dialog states and speech induced multimodal behaviors to generate a meaningful representation of the conversation. In this work, we propose to dissect SLU into three representative properties: conversational (disfluency, pause, overtalk), channel (speaker-type, turn-tasks) and ASR (insertion, deletion, substitution). We probe BERT based language models (BERT, RoBERTa) trained on spoken transcripts to investigate its ability to understand multifarious properties in absence of any speech cues. Empirical results indicate that LM is surprisingly good at capturing conversational properties such as pause prediction and overtalk detection from lexical tokens. On the downsides, the LM scores low on turn-tasks and ASR errors predictions. Additionally, pre-training the LM on spoken transcripts restrain its linguistic understanding. Finally, we establish the efficacy and transferability of the mentioned properties on two benchmark datasets: Switchboard Dialog Act and Disfluency datasets.

pdf bib
Assessing the Generalization Capacity of Pre-trained Language Models through Japanese Adversarial Natural Language Inference
Hitomi Yanaka | Koji Mineshima

Despite the success of multilingual pre-trained language models, it remains unclear to what extent these models have human-like generalization capacity across languages. The aim of this study is to investigate the out-of-distribution generalization of pre-trained language models through Natural Language Inference (NLI) in Japanese, the typological properties of which are different from those of English. We introduce a synthetically generated Japanese NLI dataset, called the Japanese Adversarial NLI (JaNLI) dataset, which is inspired by the English HANS dataset and is designed to require understanding of Japanese linguistic phenomena and illuminate the vulnerabilities of models. Through a series of experiments to evaluate the generalization performance of both Japanese and multilingual BERT models, we demonstrate that there is much room to improve current models trained on Japanese NLI tasks. Furthermore, a comparison of human performance and model performance on the different types of garden-path sentences in the JaNLI dataset shows that structural phenomena that ease interpretation of garden-path sentences for human readers do not help models in the same way, highlighting a difference between human readers and the models.

pdf bib
Investigating Negation in Pre-trained Vision-and-language Models
Radina Dobreva | Frank Keller

Pre-trained vision-and-language models have achieved impressive results on a variety of tasks, including ones that require complex reasoning beyond object recognition. However, little is known about how they achieve these results or what their limitations are. In this paper, we focus on a particular linguistic capability, namely the understanding of negation. We borrow techniques from the analysis of language models to investigate the ability of pre-trained vision-and-language models to handle negation. We find that these models severely underperform in the presence of negation.

pdf bib
Not all parameters are born equal: Attention is mostly what you need
Nikolay Bogoychev

Transformers are widely used in state-of-the-art machine translation, but the key to their success is still unknown. To gain insight into this, we consider three groups of parameters: embeddings, attention, and Feed-Forward Neural network (FFN) layers. We examine the relative importance of each by performing an ablation study where we initialise them at random and freeze them, so that their weights do not change over the course of the training. Through this, we show that the attention and FFN are equally important and fulfil the same functionality in a model. We show that the decision about whether a component is frozen or allowed to train is at least as important for the final model performance as its number of parameters. At the same time, the number of parameters alone is not indicative of a component’s importance. Finally, while the embedding layer is the least essential for machine translation tasks, it is the most important component for language modelling tasks.

pdf bib
Not All Models Localize Linguistic Knowledge in the Same Place: A Layer-wise Probing on BERToids’ Representations
Mohsen Fayyaz | Ehsan Aghazadeh | Ali Modarressi | Hosein Mohebbi | Mohammad Taher Pilehvar

Most of the recent works on probing representations have focused on BERT, with the presumption that the findings might be similar to the other models. In this work, we extend the probing studies to two other models in the family, namely ELECTRA and XLNet, showing that variations in the pre-training objectives or architectural choices can result in different behaviors in encoding linguistic information in the representations. Most notably, we observe that ELECTRA tends to encode linguistic knowledge in the deeper layers, whereas XLNet instead concentrates that in the earlier layers. Also, the former model undergoes a slight change during fine-tuning, whereas the latter experiences significant adjustments. Moreover, we show that drawing conclusions based on the weight mixing evaluation strategy—which is widely used in the context of layer-wise probing—can be misleading given the norm disparity of the representations across different layers. Instead, we adopt an alternative information-theoretic probing with minimum description length, which has recently been proven to provide more reliable and informative results.

pdf bib
Learning Mathematical Properties of Integers
Maria Ryskina | Kevin Knight

Embedding words in high-dimensional vector spaces has proven valuable in many natural language applications. In this work, we investigate whether similarly-trained embeddings of integers can capture concepts that are useful for mathematical applications. We probe the integer embeddings for mathematical knowledge, apply them to a set of numerical reasoning tasks, and show that by learning the representations from mathematical sequence data, we can substantially improve over number embeddings learned from English text corpora.

pdf bib
Probing Language Models for Understanding of Temporal Expressions
Shivin Thukral | Kunal Kukreja | Christian Kavouras

We present three Natural Language Inference (NLI) challenge sets that can evaluate NLI models on their understanding of temporal expressions. More specifically, we probe these models for three temporal properties: (a) the order between points in time, (b) the duration between two points in time, (c) the relation between the magnitude of times specified in different units. We find that although large language models fine-tuned on MNLI have some basic perception of the order between points in time, at large, these models do not have a thorough understanding of the relation between temporal expressions.

pdf bib
How Familiar Does That Sound? Cross-Lingual Representational Similarity Analysis of Acoustic Word Embeddings
Badr Abdullah | Iuliia Zaitova | Tania Avgustinova | Bernd Möbius | Dietrich Klakow

How do neural networks “perceive” speech sounds from unknown languages? Does the typological similarity between the model’s training language (L1) and an unknown language (L2) have an impact on the model representations of L2 speech signals? To answer these questions, we present a novel experimental design based on representational similarity analysis (RSA) to analyze acoustic word embeddings (AWEs)—vector representations of variable-duration spoken-word segments. First, we train monolingual AWE models on seven Indo-European languages with various degrees of typological similarity. We then employ RSA to quantify the cross-lingual similarity by simulating native and non-native spoken-word processing using AWEs. Our experiments show that typological similarity indeed affects the representational similarity of the models in our study. We further discuss the implications of our work on modeling speech processing and language similarity with neural networks.

pdf bib
Perturbing Inputs for Fragile Interpretations in Deep Natural Language Processing
Sanchit Sinha | Hanjie Chen | Arshdeep Sekhon | Yangfeng Ji | Yanjun Qi

Interpretability methods like Integrated Gradient and LIME are popular choices for explaining natural language model predictions with relative word importance scores. These interpretations need to be robust for trustworthy NLP applications in high-stake areas like medicine or finance. Our paper demonstrates how interpretations can be manipulated by making simple word perturbations on an input text. Via a small portion of word-level swaps, these adversarial perturbations aim to make the resulting text semantically and spatially similar to its seed input (therefore sharing similar interpretations). Simultaneously, the generated examples achieve the same prediction label as the seed yet are given a substantially different explanation by the interpretation methods. Our experiments generate fragile interpretations to attack two SOTA interpretation methods, across three popular Transformer models and on three different NLP datasets. We observe that the rank order correlation and top-K intersection score drops by over 20% when less than 10% of words are perturbed on average. Further, rank-order correlation keeps decreasing as more words get perturbed. Furthermore, we demonstrate that candidates generated from our method have good quality metrics.

pdf bib
An Investigation of Language Model Interpretability via Sentence Editing
Samuel Stevens | Yu Su

Pre-trained language models (PLMs) like BERT are being used for almost all language-related tasks, but interpreting their behavior still remains a significant challenge and many important questions remain largely unanswered. In this work, we re-purpose a sentence editing dataset, where faithful high-quality human rationales can be automatically extracted and compared with extracted model rationales, as a new testbed for interpretability. This enables us to conduct a systematic investigation on an array of questions regarding PLMs’ interpretability, including the role of pre-training procedure, comparison of rationale extraction methods, and different layers in the PLM. The investigation generates new insights, for example, contrary to the common understanding, we find that attention weights correlate well with human rationales and work better than gradient-based saliency in extracting model rationales. Both the dataset and code will be released to facilitate future interpretability research.

pdf bib
Interacting Knowledge Sources, Inspection and Analysis: Case-studies on Biomedical text processing
Parsa Bagherzadeh | Sabine Bergler

In this paper we investigate the recently proposed multi-input RIM for inspectability. This framework follows an encapsulation paradigm, where external knowledge sources are encoded as largely independent modules, enabling transparency for model inspection.

pdf bib
Attacks against Ranking Algorithms with Text Embeddings: A Case Study on Recruitment Algorithms
Anahita Samadi | Debapriya Banerjee | Shirin Nilizadeh

Recently, some studies have shown that text classification tasks are vulnerable to poisoning and evasion attacks. However, little work has investigated attacks against decision-making algorithms that use text embeddings, and their output is a ranking. In this paper, we focus on ranking algorithms for the recruitment process that employ text embeddings for ranking applicants’ resumes when compared to a job description. We demonstrate both white-box and black-box attacks that identify text items that, based on their location in embedding space, have a significant contribution in increasing the similarity score between a resume and a job description. The adversary then uses these text items to improve the ranking of their resume among others. We tested recruitment algorithms that use the similarity scores obtained from Universal Sentence Encoder (USE) and Term Frequency–Inverse Document Frequency (TF-IDF) vectors. Our results show that in both adversarial settings, on average the attacker is successful. We also found that attacks against TF-IDF are more successful compared to USE.

pdf bib
Controlled tasks for model analysis: Retrieving discrete information from sequences
Ionut-Teodor Sorodoc | Gemma Boleda | Marco Baroni

In recent years, the NLP community has shown increasing interest in analysing how deep learning models work. Given that large models trained on complex tasks are difficult to inspect, some of this work has focused on controlled tasks that emulate specific aspects of language. We propose a new set of such controlled tasks to explore a crucial aspect of natural language processing that has not received enough attention: the need to retrieve discrete information from sequences. We also study model behavior on the tasks with simple instantiations of Transformers and LSTMs. Our results highlight the beneficial role of decoder attention and its sometimes unexpected interaction with other components. Moreover, we show that, for most of the tasks, these simple models still show significant difficulties. We hope that the community will take up the analysis possibilities that our tasks afford, and that a clearer understanding of model behavior on the tasks will lead to better and more transparent models.

pdf bib
The Acceptability Delta Criterion: Testing Knowledge of Language using the Gradience of Sentence Acceptability
Héctor Vázquez Martínez

Any test that promises to assess Human Knowledge of Language (KoL) for any statistically-based Language Model (LM) must meet three requirements: (1) comprehensive coverage of linguistic phenomena; (2) replicable and statistically-vetted human judgement data; and (3) test the LM’s ability to track the gradience of sentence acceptability. To this end, we propose here the LI-Adger dataset: a comprehensive collection of 519 sentence types (4177 sentences) spanning the field of current generative linguistics, accompanied by attested and replicable human acceptability judgements (Sprouse & Almeida, 2012; Sprouse et al. 2013; Sprouse & Almeida, 2017). Finally, we posit the Acceptability Delta Criterion (ADC), an evaluation metric that tests how well a LM can track changes in human acceptability judgements across minimal pairs instead of testing whether the LM assigned a greater likelihood to the expert-labeled acceptable sequence of a minimal pair (S_1 > S_2). We benchmark six different BERT (Devlin et al. 2018) models and a baseline trigram model with the ADC. Although the best performing BERT model scores 94%, and the trigram scores 75% classification accuracy under the traditional metric, performance drops precipitously to 38% for BERT and 30% for the trigram model under the ADC. Adopting the ADC reveals how much harder it is for LMs to track the gradience of acceptability across minimal pairs. With this work, we propose and provide the three necessary requirements for a comprehensive linguistic analysis and test of the apparently Human KoL exhibited by LMs that we believe is currently missing in the field of Computational Linguistics.

pdf bib
How Does BERT Rerank Passages? An Attribution Analysis with Information Bottlenecks
Zhiying Jiang | Raphael Tang | Ji Xin | Jimmy Lin

Fine-tuned pre-trained transformers achieve the state of the art in passage reranking. Unfortunately, how they make their predictions remains vastly unexplained, especially at the end-to-end, input-to-output level. Little known is how tokens, layers, and passages precisely contribute to the final prediction. In this paper, we address this gap by leveraging the recently developed information bottlenecks for attribution (IBA) framework. On BERT-based models for passage reranking, we quantitatively demonstrate the framework’s veracity in extracting attribution maps, from which we perform detailed, token-wise analysis about how predictions are made. Overall, we find that BERT still cares about exact token matching for reranking; the [CLS] token mainly gathers information for predictions at the last layer; top-ranked passages are robust to token removal; and BERT fine-tuned on MSMARCO has positional bias towards the start of the passage.

pdf bib
Do Language Models Know the Way to Rome?
Bastien Liétard | Mostafa Abdou | Anders Søgaard

The global geometry of language models is important for a range of applications, but language model probes tend to evaluate rather local relations, for which ground truths are easily obtained. In this paper we exploit the fact that in geography, ground truths are available beyond local relations. In a series of experiments, we evaluate the extent to which language model representations of city and country names are isomorphic to real-world geography, e.g., if you tell a language model where Paris and Berlin are, does it know the way to Rome? We find that language models generally encode limited geographic information, but with larger models performing the best, suggesting that geographic knowledge can be induced from higher-order co-occurrence statistics.

pdf bib
Exploratory Model Analysis Using Data-Driven Neuron Representations
Daisuke Oba | Naoki Yoshinaga | Masashi Toyoda

Probing classifiers have been extensively used to inspect whether a model component captures specific linguistic phenomena. This top-down approach is, however, costly when we have no probable hypothesis on the association between the target model component and phenomena. In this study, aiming to provide a flexible, exploratory analysis of a neural model at various levels ranging from individual neurons to the model as a whole, we present a bottom-up approach to inspect the target neural model by using neuron representations obtained from a massive corpus of text. We first feed massive amount of text to the target model and collect sentences that strongly activate each neuron. We then abstract the collected sentences to obtain neuron representations that help us interpret the corresponding neurons; we augment the sentences with linguistic annotations (e.g., part-of-speech tags) and various metadata (e.g., topic and sentiment), and apply pattern mining and clustering techniques to the augmented sentences. We demonstrate the utility of our method by inspecting the pre-trained BERT. Our exploratory analysis reveals that i) specific phrases and domains of text are captured by individual neurons in BERT, ii) a group of neurons simultaneously capture the same linguistic phenomena, and iii) deeper-level layers capture more specific linguistic phenomena.

pdf bib
Fine-Tuned Transformers Show Clusters of Similar Representations Across Layers
Jason Phang | Haokun Liu | Samuel R. Bowman

Despite the success of fine-tuning pretrained language encoders like BERT for downstream natural language understanding (NLU) tasks, it is still poorly understood how neural networks change after fine-tuning. In this work, we use centered kernel alignment (CKA), a method for comparing learned representations, to measure the similarity of representations in task-tuned models across layers. In experiments across twelve NLU tasks, we discover a consistent block diagonal structure in the similarity of representations within fine-tuned RoBERTa and ALBERT models, with strong similarity within clusters of earlier and later layers, but not between them. The similarity of later layer representations implies that later layers only marginally contribute to task performance, and we verify in experiments that the top few layers of fine-tuned Transformers can be discarded without hurting performance, even with no further tuning.

pdf bib
BERT Has Uncommon Sense: Similarity Ranking for Word Sense BERTology
Luke Gessler | Nathan Schneider

An important question concerning contextualized word embedding (CWE) models like BERT is how well they can represent different word senses, especially those in the long tail of uncommon senses. Rather than build a WSD system as in previous work, we investigate contextualized embedding neighborhoods directly, formulating a query-by-example nearest neighbor retrieval task and examining ranking performance for words and senses in different frequency bands. In an evaluation on two English sense-annotated corpora, we find that several popular CWE models all outperform a random baseline even for proportionally rare senses, without explicit sense supervision. However, performance varies considerably even among models with similar architectures and pretraining regimes, with especially large differences for rare word senses, revealing that CWE models are not all created equal when it comes to approximating word senses in their native representations.


pdf (full)
bib (full)
Proceedings of the 1st Workshop on Benchmarking: Past, Present and Future

pdf bib
Proceedings of the 1st Workshop on Benchmarking: Past, Present and Future
Kenneth Church | Mark Liberman | Valia Kordoni

pdf bib
Benchmarking: Past, Present and Future
Kenneth Church | Mark Liberman | Valia Kordoni

Where have we been, and where are we going? It is easier to talk about the past than the future. These days, benchmarks evolve more bottom up (such as papers with code). There used to be more top-down leadership from government (and industry, in the case of systems, with benchmarks such as SPEC). Going forward, there may be more top-down leadership from organizations like MLPerf and/or influencers like David Ferrucci, who was responsible for IBM’s success with Jeopardy, and has recently written a paper suggesting how the community should think about benchmarking for machine comprehension. Tasks such as reading comprehension become even more interesting as we move beyond English. Multilinguality introduces many challenges, and even more opportunities.

pdf bib
Guideline Bias in Wizard-of-Oz Dialogues
Victor Petrén Bach Hansen | Anders Søgaard

NLP models struggle with generalization due to sampling and annotator bias. This paper focuses on a different kind of bias that has received very little attention: guideline bias, i.e., the bias introduced by how our annotator guidelines are formulated. We examine two recently introduced dialogue datasets, CCPE-M and Taskmaster-1, both collected by trained assistants in a Wizard-of-Oz set-up. For CCPE-M, we show how a simple lexical bias for the word like in the guidelines biases the data collection. This bias, in effect, leads to poor performance on data without this bias: a preference elicitation architecture based on BERT suffers a 5.3% absolute drop in performance, when like is replaced with a synonymous phrase, and a 13.2% drop in performance when evaluated on out-of-sample data. For Taskmaster-1, we show how the order in which instructions are resented, biases the data collection.

pdf bib
We Need to Consider Disagreement in Evaluation
Valerio Basile | Michael Fell | Tommaso Fornaciari | Dirk Hovy | Silviu Paun | Barbara Plank | Massimo Poesio | Alexandra Uma

Evaluation is of paramount importance in data-driven research fields such as Natural Language Processing (NLP) and Computer Vision (CV). Current evaluation practice largely hinges on the existence of a single “ground truth” against which we can meaningfully compare the prediction of a model. However, this comparison is flawed for two reasons. 1) In many cases, more than one answer is correct. 2) Even where there is a single answer, disagreement among annotators is ubiquitous, making it difficult to decide on a gold standard. We argue that the current methods of adjudication, agreement, and evaluation need serious reconsideration. Some researchers now propose to minimize disagreement and to fix datasets. We argue that this is a gross oversimplification, and likely to conceal the underlying complexity. Instead, we suggest that we need to better capture the sources of disagreement to improve today’s evaluation practice. We discuss three sources of disagreement: from the annotator, the data, and the context, and show how this affects even seemingly objective tasks. Datasets with multiple annotations are becoming more common, as are methods to integrate disagreement into modeling. The logical next step is to extend this to evaluation.

pdf bib
How Might We Create Better Benchmarks for Speech Recognition?
Alëna Aksënova | Daan van Esch | James Flynn | Pavel Golik

The applications of automatic speech recognition (ASR) systems are proliferating, in part due to recent significant quality improvements. However, as recent work indicates, even state-of-the-art speech recognition systems – some which deliver impressive benchmark results, struggle to generalize across use cases. We review relevant work, and, hoping to inform future benchmark development, outline a taxonomy of speech recognition use cases, proposed for the next generation of ASR benchmarks. We also survey work on metrics, in addition to the de facto standard Word Error Rate (WER) metric, and we introduce a versatile framework designed to describe interactions between linguistic variation and ASR performance metrics.


bib (full) Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing

pdf bib
Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing
Bogdan Babych | Olga Kanishcheva | Preslav Nakov | Jakub Piskorski | Lidia Pivovarova | Vasyl Starko | Josef Steinberger | Roman Yangarber | Michał Marcińczuk | Senja Pollak | Pavel Přibáň | Marko Robnik-Šikonja

pdf bib
HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish
Robert Mroczkowski | Piotr Rybak | Alina Wróblewska | Ireneusz Gawlik

BERT-based models are currently used for solving nearly all Natural Language Processing (NLP) tasks and most often achieve state-of-the-art results. Therefore, the NLP community conducts extensive research on understanding these models, but above all on designing effective and efficient training procedures. Several ablation studies investigating how to train BERT-like models have been carried out, but the vast majority of them concerned only the English language. A training procedure designed for English does not have to be universal and applicable to other especially typologically different languages. Therefore, this paper presents the first ablation study focused on Polish, which, unlike the isolating English language, is a fusional language. We design and thoroughly evaluate a pretraining procedure of transferring knowledge from multilingual to monolingual BERT-based models. In addition to multilingual model initialization, other factors that possibly influence pretraining are also explored, i.e. training objective, corpus size, BPE-Dropout, and pretraining length. Based on the proposed procedure, a Polish BERT-based language model – HerBERT – is trained. This model achieves state-of-the-art results on multiple downstream tasks.

pdf bib
Russian Paraphrasers: Paraphrase with Transformers
Alena Fenogenova

This paper studies the generation methods for paraphrasing in the Russian language. There are several transformer-based models (Russian and multilingual) trained on a collected corpus of paraphrases. We compare different models, contrast the quality of paraphrases using different ranking methods and apply paraphrasing methods in the context of augmentation procedure for different tasks. The contributions of the work are the combined paraphrasing dataset, fine-tuned generated models for Russian paraphrasing task and additionally the open source tool for simple usage of the paraphrasers.

pdf bib
Abusive Language Recognition in Russian
Kamil Saitov | Leon Derczynski

Abusive phenomena are commonplace in language on the web. The scope of recognizing abusive language is broad, covering many behaviors and forms of expression. This work addresses automatic detection of abusive language in Russian. The lexical, grammatical and morphological diversity of Russian language present potential difficulties for this task, which is addressed using a variety of machine learning approaches. Finally, competitive performance is reached over multiple domains for this investigation into automatic detection of abusive language in Russian.

pdf bib
Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company’s Reputation
Nikolay Babakov | Varvara Logacheva | Olga Kozlova | Nikita Semenov | Alexander Panchenko

Not all topics are equally “flammable” in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labelling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labelled dataset and an appropriateness-labelled dataset. We also release pre-trained classification models trained on this data.

pdf bib
BERTić - The Transformer Language Model for Bosnian, Croatian, Montenegrin and Serbian
Nikola Ljubešić | Davor Lauc

In this paper we describe a transformer model pre-trained on 8 billion tokens of crawled text from the Croatian, Bosnian, Serbian and Montenegrin web domains. We evaluate the transformer model on the tasks of part-of-speech tagging, named-entity-recognition, geo-location prediction and commonsense causal reasoning, showing improvements on all tasks over state-of-the-art models. For commonsense reasoning evaluation we introduce COPA-HR - a translation of the Choice of Plausible Alternatives (COPA) dataset into Croatian. The BERTić model is made available for free usage and further task-specific fine-tuning through HuggingFace.

pdf bib
RuSentEval: Linguistic Source, Encoder Force!
Vladislav Mikhailov | Ekaterina Taktasheva | Elina Sigdel | Ekaterina Artemova

The success of pre-trained transformer language models has brought a great deal of interest on how these models work, and what they learn about language. However, prior research in the field is mainly devoted to English, and little is known regarding other languages. To this end, we introduce RuSentEval, an enhanced set of 14 probing tasks for Russian, including ones that have not been explored yet. We apply a combination of complementary probing methods to explore the distribution of various linguistic properties in five multilingual transformers for two typologically contrasting languages – Russian and English. Our results provide intriguing findings that contradict the common understanding of how linguistic knowledge is represented, and demonstrate that some properties are learned in a similar manner despite the language differences.

pdf bib
Exploratory Analysis of News Sentiment Using Subgroup Discovery
Anita Valmarska | Luis Adrián Cabrera-Diego | Elvys Linhares Pontes | Senja Pollak

In this study, we present an exploratory analysis of a Slovenian news corpus, in which we investigate the association between named entities and sentiment in the news. We propose a methodology that combines Named Entity Recognition and Subgroup Discovery - a descriptive rule learning technique for identifying groups of examples that share the same class label (sentiment) and pattern (features - Named Entities). The approach is used to induce the positive and negative sentiment class rules that reveal interesting patterns related to different Slovenian and international politicians, organizations, and locations.

pdf bib
Creating an Aligned Russian Text Simplification Dataset from Language Learner Data
Anna Dmitrieva | Jörg Tiedemann

Parallel language corpora where regular texts are aligned with their simplified versions can be used in both natural language processing and theoretical linguistic studies. They are essential for the task of automatic text simplification, but can also provide valuable insights into the characteristics that make texts more accessible and reveal strategies that human experts use to simplify texts. Today, there exist a few parallel datasets for English and Simple English, but many other languages lack such data. In this paper we describe our work on creating an aligned Russian-Simple Russian dataset composed of Russian literature texts adapted for learners of Russian as a foreign language. This will be the first parallel dataset in this domain, and one of the first Simple Russian datasets in general.

pdf bib
Multilingual Named Entity Recognition and Matching Using BERT and Dedupe for Slavic Languages
Marko Prelevikj | Slavko Zitnik

This paper describes the University of Ljubljana (UL FRI) Group’s submissions to the shared task at the Balto-Slavic Natural Language Processing (BSNLP) 2021 Workshop. We experiment with multiple BERT-based models, pre-trained in multi-lingual, Croatian-Slovene-English and Slovene-only data. We perform training iteratively and on the concatenated data of previously available NER datasets. For the normalization task we use Stanza lemmatizer, while for entity matching we implemented a baseline using the Dedupe library. The performance of evaluations suggests that multi-source settings outperform less-resourced approaches. The best NER models achieve 0.91 F-score on Slovene training data splits while the best official submission achieved F-scores of 0.84 and 0.78 for relaxed partial matching and strict settings, respectively. In multi-lingual NER setting we achieve F-scores of 0.82 and 0.74.

pdf bib
Priberam Labs at the 3rd Shared Task on SlavNER
Pedro Ferreira | Ruben Cardoso | Afonso Mendes

This document describes our participation at the 3rd Shared Task on SlavNER, part of the 8th Balto-Slavic Natural Language Processing Workshop, where we focused exclusively in the Named Entity Recognition (NER) task. We addressed this task by combining multi-lingual contextual embedding models, such as XLM-R (Conneau et al., 2020), with character- level embeddings and a biaffine classifier (Yu et al., 2020). This allowed us to train downstream models for NER using all the available training data. We are able to show that this approach results in good performance when replicating the scenario of the 2nd Shared Task.

pdf bib
Multilingual Slavic Named Entity Recognition
Rinalds Vīksna | Inguna Skadina

Named entity recognition, in particular for morphological rich languages, is challenging task due to the richness of inflected forms and ambiguity. This challenge is being addressed by SlavNER Shared Task. In this paper we describe system submitted to this task. Our system uses pre-trained multilingual BERT Language Model and is fine-tuned for six Slavic languages of this task on texts distributed by organizers. In our experiments this multilingual NER model achieved 96 F1 score on in-domain data and an F1 score of 83 on out of domain data. Entity coreference module achieved F1 score of 47.6 as evaluated by bsnlp2021 organizers.

pdf bib
Using a Frustratingly Easy Domain and Tagset Adaptation for Creating Slavic Named Entity Recognition Systems
Luis Adrián Cabrera-Diego | Jose G. Moreno | Antoine Doucet

We present a collection of Named Entity Recognition (NER) systems for six Slavic languages: Bulgarian, Czech, Polish, Slovenian, Russian and Ukrainian. These NER systems have been trained using different BERT models and a Frustratingly Easy Domain Adaptation (FEDA). FEDA allow us creating NER systems using multiple datasets without having to worry about whether the tagset (e.g. Location, Event, Miscellaneous, Time) in the source and target domains match, while increasing the amount of data available for training. Moreover, we boosted the prediction on named entities by marking uppercase words and predicting masked words. Participating in the 3rd Shared Task on SlavNER, our NER systems reached a strict match micro F-score of up to 0.908. The results demonstrate good generalization, even in named entities with weak regularity, such as book titles, or entities that were never seen during the training.

pdf bib
Benchmarking Pre-trained Language Models for Multilingual NER: TraSpaS at the BSNLP2021 Shared Task
Marek Suppa | Ondrej Jariabka

In this paper we describe TraSpaS, a submission to the third shared task on named entity recognition hosted as part of the Balto-Slavic Natural Language Processing (BSNLP) Workshop. In it we evaluate various pre-trained language models on the NER task using three open-source NLP toolkits: character level language model with Stanza, language-specific BERT-style models with SpaCy and Adapter-enabled XLM-R with Trankit. Our results show that the Trankit-based models outperformed those based on the other two toolkits, even when trained on smaller amounts of data. Our code is available at https://github.com/NaiveNeuron/slavner-2021.

pdf bib
Named Entity Recognition and Linking Augmented with Large-Scale Structured Data
Paweł Rychlikowski | Bartłomiej Najdecki | Adrian Lancucki | Adam Kaczmarek

In this paper we describe our submissions to the 2nd and 3rd SlavNER Shared Tasks held at BSNLP 2019 and BSNLP 2021, respectively. The tasks focused on the analysis of Named Entities in multilingual Web documents in Slavic languages with rich inflection. Our solution takes advantage of large collections of both unstructured and structured documents. The former serve as data for unsupervised training of language models and embeddings of lexical units. The latter refers to Wikipedia and its structured counterpart - Wikidata, our source of lemmatization rules, and real-world entities. With the aid of those resources, our system could recognize, normalize and link entities, while being trained with only small amounts of labeled data.

pdf bib
Slav-NER: the 3rd Cross-lingual Challenge on Recognition, Normalization, Classification, and Linking of Named Entities across Slavic Languages
Jakub Piskorski | Bogdan Babych | Zara Kancheva | Olga Kanishcheva | Maria Lebedeva | Michał Marcińczuk | Preslav Nakov | Petya Osenova | Lidia Pivovarova | Senja Pollak | Pavel Přibáň | Ivaylo Radev | Marko Robnik-Sikonja | Vasyl Starko | Josef Steinberger | Roman Yangarber

This paper describes Slav-NER: the 3rd Multilingual Named Entity Challenge in Slavic languages. The tasks involve recognizing mentions of named entities in Web documents, normalization of the names, and cross-lingual linking. The Challenge covers six languages and five entity types, and is organized as part of the 8th Balto-Slavic Natural Language Processing Workshop, co-located with the EACL 2021 Conference. Ten teams participated in the competition. Performance for the named entity recognition task reached 90% F-measure, much higher than reported in the first edition of the Challenge. Seven teams covered all six languages, and five teams participated in the cross-lingual entity linking task. Detailed valuation information is available on the shared task web page.


pdf (full)
bib (full)
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching

pdf bib
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching
Thamar Solorio | Shuguang Chen | Alan W. Black | Mona Diab | Sunayana Sitaram | Victor Soto | Emre Yilmaz | Anirudh Srinivasan

pdf bib
Political Discourse Analysis: A Case Study of Code Mixing and Code Switching in Political Speeches
Dama Sravani | Lalitha Kameswari | Radhika Mamidi

Political discourse is one of the most interesting data to study power relations in the framework of Critical Discourse Analysis. With the increase in the modes of textual and spoken forms of communication, politicians use language and linguistic mechanisms that contribute significantly in building their relationship with people, especially in a multilingual country like India with many political parties with different ideologies. This paper analyses code-mixing and code-switching in Telugu political speeches to determine the factors responsible for their usage levels in various social settings and communicative contexts. We also compile a detailed set of rules capturing dialectal variations between Standard and Telangana dialects of Telugu.

pdf bib
Challenges and Limitations with the Metrics Measuring the Complexity of Code-Mixed Text
Vivek Srivastava | Mayank Singh

Code-mixing is a frequent communication style among multilingual speakers where they mix words and phrases from two different languages in the same utterance of text or speech. Identifying and filtering code-mixed text is a challenging task due to its co-existence with monolingual and noisy text. Over the years, several code-mixing metrics have been extensively used to identify and validate code-mixed text quality. This paper demonstrates several inherent limitations of code-mixing metrics with examples from the already existing datasets that are popularly used across various experiments.

pdf bib
Translate and Classify: Improving Sequence Level Classification for English-Hindi Code-Mixed Data
Devansh Gautam | Kshitij Gupta | Manish Shrivastava

Code-mixing is a common phenomenon in multilingual societies around the world and is especially common in social media texts. Traditional NLP systems, usually trained on monolingual corpora, do not perform well on code-mixed texts. Training specialized models for code-switched texts is difficult due to the lack of large-scale datasets. Translating code-mixed data into standard languages like English could improve performance on various code-mixed tasks since we can use transfer learning from state-of-the-art English models for processing the translated data. This paper focuses on two sequence-level classification tasks for English-Hindi code mixed texts, which are part of the GLUECoS benchmark - Natural Language Inference and Sentiment Analysis. We propose using various pre-trained models that have been fine-tuned for similar English-only tasks and have shown state-of-the-art performance. We further fine-tune these models on the translated code-mixed datasets and achieve state-of-the-art performance in both tasks. To translate English-Hindi code-mixed data to English, we use mBART, a pre-trained multilingual sequence-to-sequence model that has shown competitive performance on various low-resource machine translation pairs and has also shown performance gains in languages that were not in its pre-training corpus.

pdf bib
Gated Convolutional Sequence to Sequence Based Learning for English-Hingilsh Code-Switched Machine Translation.
Suman Dowlagar | Radhika Mamidi

Code-Switching is the embedding of linguistic units or phrases from two or more languages in a single sentence. This phenomenon is practiced in all multilingual communities and is prominent in social media. Consequently, there is a growing need to understand code-switched translations by translating the code-switched text into one of the standard languages or vice versa. Neural Machine translation is a well-studied research problem in the monolingual text. In this paper, we have used the gated convolutional sequences to sequence networks for English-Hinglish translation. The convolutions in the model help to identify the compositional structure in the sequences more easily. The model relies on gating and performs multiple attention steps at encoder and decoder layers.

pdf bib
IITP-MT at CALCS2021: English to Hinglish Neural Machine Translation using Unsupervised Synthetic Code-Mixed Parallel Corpus
Ramakrishna Appicharla | Kamal Kumar Gupta | Asif Ekbal | Pushpak Bhattacharyya

This paper describes the system submitted by IITP-MT team to Computational Approaches to Linguistic Code-Switching (CALCS 2021) shared task on MT for English→Hinglish. We submit a neural machine translation (NMT) system which is trained on the synthetic code-mixed (cm) English-Hinglish parallel corpus. We propose an approach to create code-mixed parallel corpus from a clean parallel corpus in an unsupervised manner. It is an alignment based approach and we do not use any linguistic resources for explicitly marking any token for code-switching. We also train NMT model on the gold corpus provided by the workshop organizers augmented with the generated synthetic code-mixed parallel corpus. The model trained over the generated synthetic cm data achieves 10.09 BLEU points over the given test set.

pdf bib
Exploring Text-to-Text Transformers for English to Hinglish Machine Translation with Synthetic Code-Mixing
Ganesh Jawahar | El Moatez Billah Nagoudi | Muhammad Abdul-Mageed | Laks Lakshmanan, V.S.

We describe models focused at the understudied problem of translating between monolingual and code-mixed language pairs. More specifically, we offer a wide range of models that convert monolingual English text into Hinglish (code-mixed Hindi and English). Given the recent success of pretrained language models, we also test the utility of two recent Transformer-based encoder-decoder models (i.e., mT5 and mBART) on the task finding both to work well. Given the paucity of training data for code-mixing, we also propose a dependency-free method for generating code-mixed texts from bilingual distributed representations that we exploit for improving language model performance. In particular, armed with this additional data, we adopt a curriculum learning approach where we first finetune the language models on synthetic data then on gold code-mixed data. We find that, although simple, our synthetic code-mixing method is competitive with (and in some cases is even superior to) several standard methods (backtranslation, method based on equivalence constraint theory) under a diverse set of conditions. Our work shows that the mT5 model, finetuned following the curriculum learning procedure, achieves best translation performance (12.67 BLEU). Our models place first in the overall ranking of the English-Hinglish official shared task.

pdf bib
CoMeT: Towards Code-Mixed Translation Using Parallel Monolingual Sentences
Devansh Gautam | Prashant Kodali | Kshitij Gupta | Anmol Goel | Manish Shrivastava | Ponnurangam Kumaraguru

Code-mixed languages are very popular in multilingual societies around the world, yet the resources lag behind to enable robust systems on such languages. A major contributing factor is the informal nature of these languages which makes it difficult to collect code-mixed data. In this paper, we propose our system for Task 1 of CACLS 2021 to generate a machine translation system for English to Hinglish in a supervised setting. Translating in the given direction can help expand the set of resources for several tasks by translating valuable datasets from high resource languages. We propose to use mBART, a pre-trained multilingual sequence-to-sequence model, and fully utilize the pre-training of the model by transliterating the roman Hindi words in the code-mixed sentences to Devanagri script. We evaluate how expanding the input by concatenating Hindi translations of the English sentences improves mBART’s performance. Our system gives a BLEU score of 12.22 on test set. Further, we perform a detailed error analysis of our proposed systems and explore the limitations of the provided dataset and metrics.

pdf bib
Investigating Code-Mixed Modern Standard Arabic-Egyptian to English Machine Translation
El Moatez Billah Nagoudi | AbdelRahim Elmadany | Muhammad Abdul-Mageed

Recent progress in neural machine translation (NMT) has made it possible to translate successfully between monolingual language pairs where large parallel data exist, with pre-trained models improving performance even further. Although there exists work on translating in code-mixed settings (where one of the pairs includes text from two or more languages), it is still unclear what recent success in NMT and language modeling exactly means for translating code-mixed text. We investigate one such context, namely MT from code-mixed Modern Standard Arabic and Egyptian Arabic (MSAEA) into English. We develop models under different conditions, employing both (i) standard end-to-end sequence-to-sequence (S2S) Transformers trained from scratch and (ii) pre-trained S2S language models (LMs). We are able to acquire reasonable performance using only MSA-EN parallel data with S2S models trained from scratch. We also find LMs fine-tuned on data from various Arabic dialects to help the MSAEA-EN task. Our work is in the context of the Shared Task on Machine Translation in Code-Switching. Our best model achieves 25.72 BLEU, placing us first on the official shared task evaluation for MSAEA-EN.

pdf bib
Much Gracias: Semi-supervised Code-switch Detection for Spanish-English: How far can we get?
Dana-Maria Iliescu | Rasmus Grand | Sara Qirko | Rob van der Goot

Because of globalization, it is becoming more and more common to use multiple languages in a single utterance, also called code-switching. This results in special linguistic structures and, therefore, poses many challenges for Natural Language Processing. Existing models for language identification in code-switched data are all supervised, requiring annotated training data which is only available for a limited number of language pairs. In this paper, we explore semi-supervised approaches, that exploit out-of-domain mono-lingual training data. We experiment with word uni-grams, word n-grams, character n-grams, Viterbi Decoding, Latent Dirichlet Allocation, Support Vector Machine and Logistic Regression. The Viterbi model was the best semi-supervised model, scoring a weighted F1 score of 92.23%, whereas a fully supervised state-of-the-art BERT-based model scored 98.43%.

pdf bib
A Language-aware Approach to Code-switched Morphological Tagging
Şaziye Betül Özateş | Özlem Çetinoğlu

Morphological tagging of code-switching (CS) data becomes more challenging especially when language pairs composing the CS data have different morphological representations. In this paper, we explore a number of ways of implementing a language-aware morphological tagging method and present our approach for integrating language IDs into a transformer-based framework for CS morphological tagging. We perform our set of experiments on the Turkish-German SAGT Treebank. Experimental results show that including language IDs to the learning model significantly improves accuracy over other approaches.

pdf bib
Can You Traducir This? Machine Translation for Code-Switched Input
Jitao Xu | François Yvon

Code-Switching (CSW) is a common phenomenon that occurs in multilingual geographic or social contexts, which raises challenging problems for natural language processing tools. We focus here on Machine Translation (MT) of CSW texts, where we aim to simultaneously disentangle and translate the two mixed languages. Due to the lack of actual translated CSW data, we generate artificial training data from regular parallel texts. Experiments show this training strategy yields MT systems that surpass multilingual systems for code-switched texts. These results are confirmed in an alternative task aimed at providing contextual translations for a L2 writing assistant.

pdf bib
On the logistical difficulties and findings of Jopara Sentiment Analysis
Marvin Agüero-Torales | David Vilares | Antonio López-Herrera

This paper addresses the problem of sentiment analysis for Jopara, a code-switching language between Guarani and Spanish. We first collect a corpus of Guarani-dominant tweets and discuss on the difficulties of finding quality data for even relatively easy-to-annotate tasks, such as sentiment analysis. Then, we train a set of neural models, including pre-trained language models, and explore whether they perform better than traditional machine learning ones in this low-resource setup. Transformer architectures obtain the best results, despite not considering Guarani during pre-training, but traditional machine learning models perform close due to the low-resource nature of the problem.

pdf bib
Unsupervised Self-Training for Sentiment Analysis of Code-Switched Data
Akshat Gupta | Sargam Menghani | Sai Krishna Rallabandi | Alan W Black

Sentiment analysis is an important task in understanding social media content like customer reviews, Twitter and Facebook feeds etc. In multilingual communities around the world, a large amount of social media text is characterized by the presence of Code-Switching. Thus, it has become important to build models that can handle code-switched data. However, annotated code-switched data is scarce and there is a need for unsupervised models and algorithms. We propose a general framework called Unsupervised Self-Training and show its applications for the specific use case of sentiment analysis of code-switched data. We use the power of pre-trained BERT models for initialization and fine-tune them in an unsupervised manner, only using pseudo labels produced by zero-shot transfer. We test our algorithm on multiple code-switched languages and provide a detailed analysis of the learning dynamics of the algorithm with the aim of answering the question - ‘Does our unsupervised model understand the Code-Switched languages or does it just learn its representations?’. Our unsupervised models compete well with their supervised counterparts, with their performance reaching within 1-7% (weighted F1 scores) when compared to supervised models trained for a two class problem.

pdf bib
CodemixedNLP: An Extensible and Open NLP Toolkit for Code-Mixing
Sai Muralidhar Jayanthi | Kavya Nerella | Khyathi Raghavi Chandu | Alan W Black

The NLP community has witnessed steep progress in a variety of tasks across the realms of monolingual and multilingual language processing recently. These successes, in conjunction with the proliferating mixed language interactions on social media, have boosted interest in modeling code-mixed texts. In this work, we present CodemixedNLP, an open-source library with the goals of bringing together the advances in code-mixed NLP and opening it up to a wider machine learning community. The library consists of tools to develop and benchmark versatile model architectures that are tailored for mixed texts, methods to expand training sets, techniques to quantify mixing styles, and fine-tuned state-of-the-art models for 7 tasks in Hinglish. We believe this work has the potential to foster a distributed yet collaborative and sustainable ecosystem in an otherwise dispersed space of code-mixing research. The toolkit is designed to be simple, easily extensible, and resourceful to both researchers as well as practitioners. Demo: http://k-ikkees.pc.cs.cmu.edu:5000 and Library: https://github.com/murali1996/CodemixedNLP

pdf bib
Normalization and Back-Transliteration for Code-Switched Data
Dwija Parikh | Thamar Solorio

Code-switching is an omnipresent phenomenon in multilingual communities all around the world but remains a challenge for NLP systems due to the lack of proper data and processing techniques. Hindi-English code-switched text on social media is often transliterated to the Roman script which prevents from utilizing monolingual resources available in the native Devanagari script. In this paper, we propose a method to normalize and back-transliterate code-switched Hindi-English text. In addition, we present a grapheme-to-phoneme (G2P) conversion technique for romanized Hindi data. We also release a dataset of script-corrected Hindi-English code-switched sentences labeled for the named entity recognition and part-of-speech tagging tasks to facilitate further research.

pdf bib
Abusive content detection in transliterated Bengali-English social media corpus
Salim Sazzed

Abusive text detection in low-resource languages such as Bengali is a challenging task due to the inadequacy of resources and tools. The ubiquity of transliterated Bengali comments in social media makes the task even more involved as monolingual approaches cannot capture them. Unfortunately, no transliterated Bengali corpus is publicly available yet for abusive content analysis. Therefore, in this paper, we introduce an annotated Bengali corpus of 3000 transliterated Bengali comments categorized into two classes, abusive and non-abusive, 1500 comments for each. For baseline evaluations, we employ several supervised machine learning (ML) and deep learning-based classifiers. We find support vector machine (SVM) shows the highest efficacy for identifying abusive content. We make the annotated corpus freely available for the researcher to aid abusive content detection in Bengali social media data.

pdf bib
Developing ASR for Indonesian-English Bilingual Language Teaching
Zara Maxwell-Smith | Ben Foley

Usage-based analyses of teacher corpora and code-switching (Boztepe, 2003) are an important next stage in understanding language acquisition. Multilingual corpora are difficult to compile and a classroom setting adds pedagogy to the mix of factors which make this data so rich and problematic to classify. Using quantitative methods to understand language learning and teaching is difficult work as the ‘transcription bottleneck’ constrains the size of datasets. We found that using an automatic speech recognition (ASR) toolkit with a small set of training data is likely to speed data collection in this context (Maxwelll-Smith et al., 2020).

pdf bib
Transliteration for Low-Resource Code-Switching Texts: Building an Automatic Cyrillic-to-Latin Converter for Tatar
Chihiro Taguchi | Yusuke Sakai | Taro Watanabe

We introduce a Cyrillic-to-Latin transliterator for the Tatar language based on subword-level language identification. The transliteration is a challenging task due to the following two reasons. First, because modern Tatar texts often contain intra-word code-switching to Russian, a different transliteration set of rules needs to be applied to each morpheme depending on the language, which necessitates morpheme-level language identification. Second, the fact that Tatar is a low-resource language, with most of the texts in Cyrillic, makes it difficult to prepare a sufficient dataset. Given this situation, we proposed a transliteration method based on subword-level language identification. We trained a language classifier with monolingual Tatar and Russian texts, and applied different transliteration rules in accord with the identified language. The results demonstrate that our proposed method outscores other Tatar transliteration tools, and imply that it correctly transcribes Russian loanwords to some extent.

pdf bib
Code-Mixing on Sesame Street: Dawn of the Adversarial Polyglots
Samson Tan | Shafiq Joty

Multilingual models have demonstrated impressive cross-lingual transfer performance. However, test sets like XNLI are monolingual at the example level. In multilingual communities, it is common for polyglots to code-mix when conversing with each other. Inspired by this phenomenon, we present two strong black-box adversarial attacks (one word-level, one phrase-level) for multilingual models that push their ability to handle code-mixed sentences to the limit. The former (PolyGloss) uses bilingual dictionaries to propose perturbations and translations of the clean example for sense disambiguation. The latter (Bumblebee) directly aligns the clean example with its translations before extracting phrases as perturbations. Bumblebee has a success rate of 89.75% against XLM-R-large, bringing its average accuracy of 79.85 down to 8.18 on XNLI. Finally, we propose an efficient adversarial training scheme, Code-mixed Adversarial Training (CAT), that trains in the same number of steps as the original model. Even after controlling for the extra training data introduced, CAT improves model accuracy when the model is prevented from relying on lexical overlaps (+3.45), with a negligible drop (-0.15 points) in performance on the original XNLI test set. t-SNE visualizations reveal that CAT improves a model’s language agnosticity. This paper will be published in the proceedings of NAACL-HLT 2021.

pdf bib
Are Multilingual Models Effective in Code-Switching?
Genta Indra Winata | Samuel Cahyawijaya | Zihan Liu | Zhaojiang Lin | Andrea Madotto | Pascale Fung

Multilingual language models have shown decent performance in multilingual and cross-lingual natural language understanding tasks. However, the power of these multilingual models in code-switching tasks has not been fully explored. In this paper, we study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting by considering the inference speed, performance, and number of parameters to measure their practicality. We conduct experiments in three language pairs on named entity recognition and part-of-speech tagging and compare them with existing methods, such as using bilingual embeddings and multilingual meta-embeddings. Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching, while using meta-embeddings achieves similar results with significantly fewer parameters.


pdf (full)
bib (full)
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)

pdf bib
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)
Ali Hürriyetoğlu

pdf bib
Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021): Workshop and Shared Task Report
Ali Hürriyetoğlu | Hristo Tanev | Vanni Zavarella | Jakub Piskorski | Reyyan Yeniterzi | Osman Mutlu | Deniz Yuret | Aline Villavicencio

This workshop is the fourth issue of a series of workshops on automatic extraction of socio-political events from news, organized by the Emerging Market Welfare Project, with the support of the Joint Research Centre of the European Commission and with contributions from many other prominent scholars in this field. The purpose of this series of workshops is to foster research and development of reliable, valid, robust, and practical solutions for automatically detecting descriptions of socio-political events, such as protests, riots, wars and armed conflicts, in text streams. This year workshop contributors make use of the state-of-the-art NLP technologies, such as Deep Learning, Word Embeddings and Transformers and cover a wide range of topics from text classification to news bias detection. Around 40 teams have registered and 15 teams contributed to three tasks that are i) multilingual protest news detection detection, ii) fine-grained classification of socio-political events, and iii) discovering Black Lives Matter protest events. The workshop also highlights two keynote and four invited talks about various aspects of creating event data sets and multi- and cross-lingual machine learning in few- and zero-shot settings.

pdf bib
Keynote Abstract: Events on a Global Scale: Towards Language-Agnostic Event Extraction
Elizabeth Boschee

Event extraction is a challenging and exciting task in the world of machine learning & natural language processing. The breadth of events of possible interest, the speed at which surrounding socio-political event contexts evolve, and the complexities involved in generating representative annotated data all contribute to this challenge. One particular dimension of difficulty is the intrinsically global nature of events: many downstream use cases for event extraction involve reporting not just in a few major languages but in a much broader context. The languages of interest for even a fixed task may still shift from day to day, e.g. when a disease emerges in an unexpected location. Early approaches to multi-lingual event extraction (e.g. ACE) relied wholly on supervised data provided in each language of interest. Later approaches leveraged the success of machine translation to side-step the issue, simply translating foreign-language content to English and deploying English models on the result (often leaving some significant portion of the original content behind). Most recently, however, the community has begun to shown significant progress applying zero-shot transfer techniques to the problem, developing models using supervised English data but decoding in a foreign language without translation, typically using embedding spaces specifically designed to capture multi-lingual semantic content. In this talk I will discuss multiple dimensions of these promising new approaches and the linguistic representations that underlie them. I will compare them with approaches based on machine translation (as well as with models trained using in-language training data, where available), and discuss their strengths and weaknesses in different contexts, including the amount of English/foreign bitext available and the nature of the target event ontology. I will also discuss possible future directions with an eye to improving the quality of event extraction no matter its source around the globe.

pdf bib
Keynote Abstract: Machine Learning in Conflict Studies: Reflections on Ethics, Collaboration, and Ongoing Challenges
Kristine Eck

Advances in machine learning are nothing short of revolutionary in their potential to analyze massive amounts of data and in doing so, create new knowledge bases. But there is a responsibility in wielding the power to analyze these data since the public attributes a high degree of confidence to results which are based on big datasets. In this keynote, I will first address our ethical imperative as scholars to “get it right.” This imperative relates not only to model precision but also to the quality of the underlying data, and to whether the models inadvertently reproduce or obscure political biases in the source material. In considering the ethical imperative to get it right, it is also important to define what is “right”: what is considered an acceptable threshold for classification success needs to be understood in light of the project’s objectives. I then reflect on the different topics and data which are sourced in this field. Much of the existing research has focused on identifying conflict events (e.g. battles), but scholars are also increasingly turning to ML approaches to address other facets of the conflict environment. Conflict event extraction has long been a challenge for the natural language processing (NLP) community because it requires sophisticated methods for defining event ontologies, creating language resources, and developing algorithmic approaches. NLP machine-learning tools are ill-adapted to the complex, often messy, and diverse data generated during conflicts. Relative to other types of NLP text corpora, conflicts tend to generate less textual data, and texts are generated non-systematically. Conflict-related texts are often lexically idiosyncratic and tend to be written differently across actors, periods, and conflicts. Event definition and adjudication present tough challenges in the context of conflict corpora. Topics which rely on other types of data may be better-suited to NLP and machine learning methods. For example, Twitter and other social media data lend themselves well to studying hate speech, public opinion, social polarization, or discursive aspects of conflictual environments. Likewise, government-produced policy documents have typically been analyzed with historical, qualitative methods but their standardized formats and quantity suggest that ML methods can provide new traction. ML approaches may also allow scholars to exploit local sources and multi-language sources to a greater degree than has been possible. Many challenges remain, and these are best addressed in collaborative projects which build on interdisciplinary expertise. Classification projects need to be anchored in the theoretical interests of scholars of political violence if the data they produce are to be put to analytical use. There are few ontologies for classification that adequately reflect conflict researchers’ interests, which highlights the need for conceptual as well as technical development.

pdf bib
PROTEST-ER: Retraining BERT for Protest Event Extraction
Tommaso Caselli | Osman Mutlu | Angelo Basile | Ali Hürriyetoğlu

We analyze the effect of further retraining BERT with different domain specific data as an unsupervised domain adaptation strategy for event extraction. Portability of event extraction models is particularly challenging, with large performance drops affecting data on the same text genres (e.g., news). We present PROTEST-ER, a retrained BERT model for protest event extraction. PROTEST-ER outperforms a corresponding generic BERT on out-of-domain data of 8.1 points. Our best performing models reach 51.91-46.39 F1 across both domains.

pdf bib
ArgFuse: A Weakly-Supervised Framework for Document-Level Event Argument Aggregation
Debanjana Kar | Sudeshna Sarkar | Pawan Goyal

Most of the existing information extraction frameworks (Wadden et al., 2019; Veysehet al., 2020) focus on sentence-level tasks and are hardly able to capture the consolidated information from a given document. In our endeavour to generate precise document-level information frames from lengthy textual records, we introduce the task of Information Aggregation or Argument Aggregation. More specifically, our aim is to filter irrelevant and redundant argument mentions that were extracted at a sentence level and render a document level information frame. Majority of the existing works have been observed to resolve related tasks of document-level event argument extraction (Yang et al., 2018; Zheng et al., 2019) and salient entity identification (Jain et al., 2020) using supervised techniques. To remove dependency from large amounts of labelled data, we explore the task of information aggregation using weakly supervised techniques. In particular, we present an extractive algorithm with multiple sieves which adopts active learning strategies to work efficiently in low-resource settings. For this task, we have annotated our own test dataset comprising of 131 document information frames and have released the code and dataset to further research prospects in this new domain. To the best of our knowledge, we are the first to establish baseline results for this task in English. Our data and code are publicly available at https://github.com/DebanjanaKar/ArgFuse.

pdf bib
Modality and Negation in Event Extraction
Sander Bijl de Vroe | Liane Guillou | Miloš Stanojević | Nick McKenna | Mark Steedman

Language provides speakers with a rich system of modality for expressing thoughts about events, without being committed to their actual occurrence. Modality is commonly used in the political news domain, where both actual and possible courses of events are discussed. NLP systems struggle with these semantic phenomena, often incorrectly extracting events which did not happen, which can lead to issues in downstream applications. We present an open-domain, lexicon-based event extraction system that captures various types of modality. This information is valuable for Question Answering, Knowledge Graph construction and Fact-checking tasks, and our evaluation shows that the system is sufficiently strong to be used in downstream applications.

pdf bib
Characterizing News Portrayal of Civil Unrest in Hong Kong, 1998–2020
James Scharf | Arya D. McCarthy | Giovanna Maria Dora Dore

We apply statistical techniques from natural language processing to a collection of Western and Hong Kong–based English-language newspaper articles spanning the years 1998–2020, studying the difference and evolution of its portrayal. We observe that both content and attitudes differ between Western and Hong Kong–based sources. ANOVA on keyword frequencies reveals that Hong Kong–based papers discuss protests and democracy less often. Topic modeling detects salient aspects of protests and shows that Hong Kong–based papers made fewer references to police violence during the Anti–Extradition Law Amendment Bill Movement. Diachronic shifts in word embedding neighborhoods reveal a shift in the characterization of salient keywords once the Movement emerged. Together, these raise questions about the existence of anodyne reporting from Hong Kong–based media. Likewise, they illustrate the importance of sample selection for protest event analysis.

pdf bib
Regressing Location on Text for Probabilistic Geocoding
Benjamin J. Radford

Text data are an important source of detailed information about social and political events. Automated systems parse large volumes of text data to infer or extract structured information that describes actors, actions, dates, times, and locations. One of these sub-tasks is geocoding: predicting the geographic coordinates associated with events or locations described by a given text. I present an end-to-end probabilistic model for geocoding text data. Additionally, I collect a novel data set for evaluating the performance of geocoding systems. I compare the model-based solution, called ELECTRo-map, to the current state-of-the-art open source system for geocoding texts for event data. Finally, I discuss the benefits of end-to-end model-based geocoding, including principled uncertainty estimation and the ability of these models to leverage contextual information.

pdf bib
Extracting Events from Industrial Incident Reports
Nitin Ramrakhiyani | Swapnil Hingmire | Sangameshwar Patil | Alok Kumar | Girish Palshikar

Incidents in industries have huge social and political impact and minimizing the consequent damage has been a high priority. However, automated analysis of repositories of incident reports has remained a challenge. In this paper, we focus on automatically extracting events from incident reports. Due to absence of event annotated datasets for industrial incidents we employ a transfer learning based approach which is shown to outperform several baselines. We further provide detailed analysis regarding effect of increase in pre-training data and provide explainability of why pre-training improves the performance.

pdf bib
Automatic Fake News Detection in Political Platforms - A Transformer-based Approach
Shaina Raza

The dynamics and influence of fake news on Twitter during the 2020 US presidential election remains to be clarified. Here, we use a dataset related to 2020 U.S Election that consists of news articles and tweets on those articles. Therefore, it is extremely important to stop the spread of fake news before it reaches a mass level, which is a big challenge. We propose a novel fake news detection framework that can address this challenge. Our proposed framework exploits the information from news articles and social contexts to detect fake news. The proposed model is based on a Transformer architecture, which can learn useful representations from fake news data and predicts the probability of a news as being fake or real. Experimental results on real-world data show that our model can detect fake news with higher accuracy and much earlier, compared to the baselines.

pdf bib
Multilingual Protest News Detection - Shared Task 1, CASE 2021
Ali Hürriyetoğlu | Osman Mutlu | Erdem Yörük | Farhana Ferdousi Liza | Ritesh Kumar | Shyam Ratan

Benchmarking state-of-the-art text classification and information extraction systems in multilingual, cross-lingual, few-shot, and zero-shot settings for socio-political event information collection is achieved in the scope of the shared task Socio-political and Crisis Events Detection at the workshop CASE @ ACL-IJCNLP 2021. Socio-political event data is utilized for national and international policy- and decision-making. Therefore, the reliability and validity of these datasets are of the utmost importance. We split the shared task into three parts to address the three aspects of data collection (Task 1), fine-grained semantic classification (Task 2), and evaluation (Task 3). Task 1, which is the focus of this report, is on multilingual protest news detection and comprises four subtasks that are document classification (subtask 1), sentence classification (subtask 2), event sentence coreference identification (subtask 3), and event extraction (subtask 4). All subtasks had English, Portuguese, and Spanish for both training and evaluation data. Data in Hindi language was available only for the evaluation of subtask 1. The majority of the submissions, which are 238 in total, are created using multi- and cross-lingual approaches. Best scores are above 77.27 F1-macro for subtask 1, above 85.32 F1-macro for subtask 2, above 84.23 CoNLL 2012 average score for subtask 3, and above 66.20 F1-macro for subtask 4 in all evaluation settings. The performance of the best system for subtask 4 is above 66.20 F1 for all available languages. Although there is still a significant room for improvement in cross-lingual and zero-shot settings, the best submissions for each evaluation scenario yield remarkable results. Monolingual models outperformed the multilingual models in a few evaluation scenarios.

pdf bib
Shared Task 1 System Description : Exploring different approaches for multilingual tasks
Sureshkumar Vivek Kalyan | Tan Paul | Tan Shaun | Martin Andrews

The aim of the CASE 2021 Shared Task 1 was to detect and classify socio-political and crisis event information at document, sentence, cross-sentence, and token levels in a multilingual setting, with each of these subtasks being evaluated separately in each test language. Our submission contained entries in all of the subtasks, and the scores obtained validated our research finding : That the multilingual element of the tasks should be embraced, so that modeling and training regimes use the multilingual nature of the tasks to their mutual benefit, rather than trying to tackle the different languages separately.

pdf bib
IIITT at CASE 2021 Task 1: Leveraging Pretrained Language Models for Multilingual Protest Detection
Pawan Kalyan | Duddukunta Reddy | Adeep Hande | Ruba Priyadharshini | Ratnasingam Sakuntharaj | Bharathi Raja Chakravarthi

In a world abounding in constant protests resulting from events like a global pandemic, climate change, religious or political conflicts, there has always been a need to detect events/protests before getting amplified by news media or social media. This paper demonstrates our work on the sentence classification subtask of multilingual protest detection in CASE@ACL-IJCNLP 2021. We approached this task by employing various multilingual pre-trained transformer models to classify if any sentence contains information about an event that has transpired or not. We performed soft voting over the models, achieving the best results among the models, accomplishing a macro F1-Score of 0.8291, 0.7578, and 0.7951 in English, Spanish, and Portuguese, respectively.

pdf bib
NUS-IDS at CASE 2021 Task 1: Improving Multilingual Event Sentence Coreference Identification With Linguistic Information
Fiona Anting Tan | Sujatha Das Gollapalli | See-Kiong Ng

Event Sentence Coreference Identification (ESCI) aims to cluster event sentences that refer to the same event together for information extraction. We describe our ESCI solution developed for the ACL-CASE 2021 shared tasks on the detection and classification of socio-political and crisis event information in a multilingual setting. For a given article, our proposed pipeline comprises of an accurate sentence pair classifier that identifies coreferent sentence pairs and subsequently uses these predicted probabilities to cluster sentences into groups. Sentence pair representations are constructed from fine-tuned BERT embeddings plus POS embeddings fed through a BiLSTM model, and combined with linguistic-based lexical and semantic similarities between sentences. Our best models ranked 2nd, 1st and 2nd and obtained CoNLL F1 scores of 81.20%, 93.03%, 83.15% for the English, Portuguese and Spanish test sets respectively in the ACL-CASE 2021 competition.

pdf bib
FKIE_itf_2021 at CASE 2021 Task 1: Using Small Densely Fully Connected Neural Nets for Event Detection and Clustering
Nils Becker | Theresa Krumbiegel

In this paper we present multiple approaches for event detection on document and sentence level, as well as a technique for event sentence co-reference resolution. The advantage of our co-reference resolution approach, which handles the task as a clustering problem, is that we use a single neural net to solve the task, which stands in contrast to other clustering algorithms that often are build on more complex models. This means that we can set our focus on the optimization of a single neural network instead of having to optimize numerous different parameters. We use small densely connected neural networks and pre-trained multilingual transformer embeddings in all subtasks. We use either document or sentence embeddings, depending on the task, and refrain from using word embeddings, so that the implementation of complicated network structures and unfolding of RNNs, which can deal with input of different sizes, is not necessary. We achieved an average macro F1 of 0.65 in subtask 1 (i.e., document level classification), and a macro F1 of 0.70 in subtask 2 (i.e., sentence level classification). For the co-reference resolution subtask, we achieved an average CoNLL-2012 score across all languages of 0.83.

pdf bib
DAAI at CASE 2021 Task 1: Transformer-based Multilingual Socio-political and Crisis Event Detection
Hansi Hettiarachchi | Mariam Adedoyin-Olowe | Jagdev Bhogal | Mohamed Medhat Gaber

Automatic socio-political and crisis event detection has been a challenge for natural language processing as well as social and political science communities, due to the diversity and nuance in such events and high accuracy requirements. In this paper, we propose an approach which can handle both document and cross-sentence level event detection in a multilingual setting using pretrained transformer models. Our approach became the winning solution in document level predictions and secured the 3rd place in cross-sentence level predictions for the English language. We could also achieve competitive results for other languages to prove the effectiveness and universality of our approach.

pdf bib
SU-NLP at CASE 2021 Task 1: Protest News Detection for English
Furkan Çelik | Tuğberk Dalkılıç | Fatih Beyhan | Reyyan Yeniterzi

This paper summarizes our group’s efforts in the multilingual protest news detection shared task, which is organized as a part of the Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE) Workshop. We participated in all four subtasks in English. Especially in the identification of event containing sentences task, our proposed ensemble approach using RoBERTa and multichannel CNN-LexStem model yields higher performance. Similarly in the event extraction task, our transformer-LSTM-CRF architecture outperforms regular transformers significantly.

pdf bib
IBM MNLP IE at CASE 2021 Task 1: Multigranular and Multilingual Event Detection on Protest News
Parul Awasthy | Jian Ni | Ken Barker | Radu Florian

In this paper, we present the event detection models and systems we have developed for Multilingual Protest News Detection - Shared Task 1 at CASE 2021. The shared task has 4 subtasks which cover event detection at different granularity levels (from document level to token level) and across multiple languages (English, Hindi, Portuguese and Spanish). To handle data from multiple languages, we use a multilingual transformer-based language model (XLM-R) as the input text encoder. We apply a variety of techniques and build several transformer-based models that perform consistently well across all the subtasks and languages. Our systems achieve an average F_1 score of 81.2. Out of thirteen subtask-language tracks, our submissions rank 1st in nine and 2nd in four tracks.

pdf bib
ALEM at CASE 2021 Task 1: Multilingual Text Classification on News Articles
Alaeddin Gürel | Emre Emin

We participated CASE shared task in ACL-IJCNLP 2021. This paper is a summary of our experiments and ideas about this shared task. For each subtask we shared our approach, successful and failed methods and our thoughts about them. We submit our results once for every subtask, except for subtask3, in task submission system and present scores based on our validation set formed from given training samples in this paper. Techniques and models we mentioned includes BERT, Multilingual BERT, oversampling, undersampling, data augmentation and their implications with each other. Most of the experiments we came up with were not completed, as time did not permit, but we share them here as we plan to do them as suggested in the future work part of document.

pdf bib
Team “NoConflict” at CASE 2021 Task 1: Pretraining for Sentence-Level Protest Event Detection
Tiancheng Hu | Niklas Stoehr

An ever-increasing amount of text, in the form of social media posts and news articles, gives rise to new challenges and opportunities for the automatic extraction of socio-political events. In this paper, we present our submission to the Shared Tasks on Socio-Political and Crisis Events Detection, Task 1, Multilingual Protest News Detection, Subtask 2, Event Sentence Classification, of CASE @ ACL-IJCNLP 2021. In our submission, we utilize the RoBERTa model with additional pretraining, and achieve the best F1 score of 0.8532 in event sentence classification in English and the second-best F1 score of 0.8700 in Portuguese via simple translation. We analyze the failure cases of our model. We also conduct an ablation study to show the effect of choosing the right pretrained language model, adding additional training data and data augmentation.

pdf bib
AMU-EURANOVA at CASE 2021 Task 1: Assessing the stability of multilingual BERT
Léo Bouscarrat | Antoine Bonnefoy | Cécile Capponi | Carlos Ramisch

This paper explains our participation in task 1 of the CASE 2021 shared task. This task is about multilingual event extraction from news. We focused on sub-task 4, event information extraction. This sub-task has a small training dataset and we fine-tuned a multilingual BERT to solve this sub-task. We studied the instability problem on the dataset and tried to mitigate it.

pdf bib
Team “DaDeFrNi” at CASE 2021 Task 1: Document and Sentence Classification for Protest Event Detection
Francesco Re | Daniel Vegh | Dennis Atzenhofer | Niklas Stoehr

This paper accompanies our top-performing submission to the CASE 2021 shared task, which is hosted at the workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text. Subtasks 1 and 2 of Task 1 concern the classification of newspaper articles and sentences into “conflict” versus “not conflict”-related in four different languages. Our model performs competitively in both subtasks (up to 0.8662 macro F1), obtaining the highest score of all contributions for subtask 1 on Hindi articles (0.7877 macro F1). We describe all experiments conducted with the XLM-RoBERTa (XLM-R) model and report results obtained in each binary classification task. We propose supplementing the original training data with additional data on political conflict events. In addition, we provide an analysis of unigram probability estimates and geospatial references contained within the original training corpus.

pdf bib
Fine-grained Event Classification in News-like Text Snippets - Shared Task 2, CASE 2021
Jacek Haneczok | Guillaume Jacquet | Jakub Piskorski | Nicolas Stefanovitch

This paper describes the Shared Task on Fine-grained Event Classification in News-like Text Snippets. The Shared Task is divided into three sub-tasks: (a) classification of text snippets reporting socio-political events (25 classes) for which vast amount of training data exists, although exhibiting different structure and style vis-a-vis test data, (b) enhancement to a generalized zero-shot learning problem, where 3 additional event types were introduced in advance, but without any training data (‘unseen’ classes), and (c) further extension, which introduced 2 additional event types, announced shortly prior to the evaluation phase. The reported Shared Task focuses on classification of events in English texts and is organized as part of the Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021), co-located with the ACL-IJCNLP 2021 Conference. Four teams participated in the task. Best performing systems for the three aforementioned sub-tasks achieved 83.9%, 79.7% and 77.1% weighted F1 scores respectively.

pdf bib
IBM MNLP IE at CASE 2021 Task 2: NLI Reranking for Zero-Shot Text Classification
Ken Barker | Parul Awasthy | Jian Ni | Radu Florian

Supervised models can achieve very high accuracy for fine-grained text classification. In practice, however, training data may be abundant for some types but scarce or even non-existent for others. We propose a hybrid architecture that uses as much labeled data as available for fine-tuning classification models, while also allowing for types with little (few-shot) or no (zero-shot) labeled data. In particular, we pair a supervised text classification model with a Natural Language Inference (NLI) reranking model. The NLI reranker uses a textual representation of target types that allows it to score the strength with which a type is implied by a text, without requiring training data for the types. Experiments show that the NLI model is very sensitive to the choice of textual representation, but can be effective for classifying unseen types. It can also improve classification accuracy for the known types of an already highly accurate supervised model.

pdf bib
CASE 2021 Task 2: Zero-Shot Classification of Fine-Grained Sociopolitical Events with Transformer Models
Benjamin J. Radford

We introduce a method for the classification of texts into fine-grained categories of sociopolitical events. This particular method is responsive to all three Subtasks of Task 2, Fine-Grained Classification of Socio-Political Events, introduced at the CASE workshop of ACL-IJCNLP 2021. We frame Task 2 as textual entailment: given an input text and a candidate event class (“query”), the model predicts whether the text describes an event of the given type. The model is able to correctly classify in-sample event types with an average F1-score of 0.74 but struggles with some out-of-sample event types. Despite this, the model shows promise for the zero-shot identification of certain sociopolitical events by achieving an F1-score of 0.52 on one wholly out-of-sample event class.

pdf bib
CASE 2021 Task 2 Socio-political Fine-grained Event Classification using Fine-tuned RoBERTa Document Embeddings
Samantha Kent | Theresa Krumbiegel

We present our submission to Task 2 of the Socio-political and Crisis Events Detection Shared Task at the CASE @ ACL-IJCNLP 2021 workshop. The task at hand aims at the fine-grained classification of socio-political events. Our best model was a fine-tuned RoBERTa transformer model using document embeddings. The corpus consisted of a balanced selection of sub-events extracted from the ACLED event dataset. We achieved a macro F-score of 0.923 and a micro F-score of 0.932 during our preliminary experiments on a held-out test set. The same model also performed best on the shared task test data (weighted F-score = 0.83). To analyze the results we calculated the topic compactness of the commonly misclassified events and conducted an error analysis.

pdf bib
Discovering Black Lives Matter Events in the United States: Shared Task 3, CASE 2021
Salvatore Giorgi | Vanni Zavarella | Hristo Tanev | Nicolas Stefanovitch | Sy Hwang | Hansi Hettiarachchi | Tharindu Ranasinghe | Vivek Kalyan | Paul Tan | Shaun Tan | Martin Andrews | Tiancheng Hu | Niklas Stoehr | Francesco Ignazio Re | Daniel Vegh | Dennis Atzenhofer | Brenda Curtis | Ali Hürriyetoğlu

Evaluating the state-of-the-art event detection systems on determining spatio-temporal distribution of the events on the ground is performed unfrequently. But, the ability to both (1) extract events “in the wild” from text and (2) properly evaluate event detection systems has potential to support a wide variety of tasks such as monitoring the activity of socio-political movements, examining media coverage and public support of these movements, and informing policy decisions. Therefore, we study performance of the best event detection systems on detecting Black Lives Matter (BLM) events from tweets and news articles. The murder of George Floyd, an unarmed Black man, at the hands of police officers received global attention throughout the second half of 2020. Protests against police violence emerged worldwide and the BLM movement, which was once mostly regulated to the United States, was now seeing activity globally. This shared task asks participants to identify BLM related events from large unstructured data sources, using systems pretrained to extract socio-political events from text. We evaluate several metrics, accessing each system’s ability to identify protest events both temporally and spatially. Results show that identifying daily protest counts is an easier task than classifying spatial and temporal protest trends simultaneously, with maximum performance of 0.745 and 0.210 (Pearson r), respectively. Additionally, all baselines and participant systems suffered from low recall, with a maximum recall of 5.08.


bib (full) Proceedings of the First Workshop on Causal Inference and NLP

pdf bib
Proceedings of the First Workshop on Causal Inference and NLP
Amir Feder | Katherine Keith | Emaad Manzoor | Reid Pryzant | Dhanya Sridhar | Zach Wood-Doughty | Jacob Eisenstein | Justin Grimmer | Roi Reichart | Molly Roberts | Uri Shalit | Brandon Stewart | Victor Veitch | Diyi Yang

pdf bib
Causal Augmentation for Causal Sentence Classification
Fiona Anting Tan | Devamanyu Hazarika | See-Kiong Ng | Soujanya Poria | Roger Zimmermann

Scarcity of annotated causal texts leads to poor robustness when training state-of-the-art language models for causal sentence classification. In particular, we found that models misclassify on augmented sentences that have been negated or strengthened with respect to its causal meaning. This is worrying since minor linguistic differences in causal sentences can have disparate meanings. Therefore, we propose the generation of counterfactual causal sentences by creating contrast sets (Gardner et al., 2020) to be included during model training. We experimented on two model architectures and predicted on two out-of-domain corpora. While our strengthening schemes proved useful in improving model performance, for negation, regular edits were insufficient. Thus, we also introduce heuristics like shortening or multiplying root words of a sentence. By including a mixture of edits when training, we achieved performance improvements beyond the baseline across both models, and within and out of corpus’ domain, suggesting that our proposed augmentation can also help models generalize.

pdf bib
Text as Causal Mediators: Research Design for Causal Estimates of Differential Treatment of Social Groups via Language Aspects
Katherine Keith | Douglas Rice | Brendan O’Connor

Using observed language to understand interpersonal interactions is important in high-stakes decision making. We propose a causal research design for observational (non-experimental) data to estimate the natural direct and indirect effects of social group signals (e.g. race or gender) on speakers’ responses with separate aspects of language as causal mediators. We illustrate the promises and challenges of this framework via a theoretical case study of the effect of an advocate’s gender on interruptions from justices during U.S. Supreme Court oral arguments. We also discuss challenges conceptualizing and operationalizing causal variables such as gender and language that comprise of many components, and we articulate technical open challenges such as temporal dependence between language mediators in conversational settings.

pdf bib
Enhancing Model Robustness and Fairness with Causality: A Regularization Approach
Zhao Wang | Kai Shu | Aron Culotta

Recent work has raised concerns on the risk of spurious correlations and unintended biases in statistical machine learning models that threaten model robustness and fairness. In this paper, we propose a simple and intuitive regularization approach to integrate causal knowledge during model training and build a robust and fair model by emphasizing causal features and de-emphasizing spurious features. Specifically, we first manually identify causal and spurious features with principles inspired from the counterfactual framework of causal inference. Then, we propose a regularization approach to penalize causal and spurious features separately. By adjusting the strength of the penalty for each type of feature, we build a predictive model that relies more on causal features and less on non-causal features. We conduct experiments to evaluate model robustness and fairness on three datasets with multiple metrics. Empirical results show that the new models built with causal awareness significantly improve model robustness with respect to counterfactual texts and model fairness with respect to sensitive attributes.

pdf bib
What Makes a Scientific Paper be Accepted for Publication?
Panagiotis Fytas | Georgios Rizos | Lucia Specia

Despite peer-reviewing being an essential component of academia since the 1600s, it has repeatedly received criticisms for lack of transparency and consistency. We posit that recent work in machine learning and explainable AI provide tools that enable insights into the decisions from a given peer-review process. We start by simulating the peer-review process using an ML classifier and extracting global explanations in the form of linguistic features that affect the acceptance of a scientific paper for publication on an open peer-review dataset. Second, since such global explanations do not justify causal interpretations, we propose a methodology for detecting confounding effects in natural language and generating explanations, disentangled from textual confounders, in the form of lexicons. Our proposed linguistic explanation methodology indicates the following on a case dataset of ICLR submissions: a) the organising committee follows, for the most part, the recommendations of reviewers, and b) the paper’s main characteristics that led to reviewers recommending acceptance for publication are originality, clarity and substance.

pdf bib
Sensitivity Analysis for Causal Mediation through Text: an Application to Political Polarization
Graham Tierney | Alexander Volfovsky

We introduce a procedure to examine a text-as-mediator problem from a novel randomized experiment that studied the effect of conversations on political polarization. In this randomized experiment, Americans from the Democratic and Republican parties were either randomly paired with one-another to have an anonymous conversation about politics or alternatively not assigned to a conversation — change in political polarization over time was measured for all participants. This paper analyzes the text of the conversations to identify potential mediators of depolarization and is faced with a unique challenge, necessitated by the primary research hypothesis, that individuals in the control condition do not have conversations and so lack observed text data. We highlight the importance of using domain knowledge to perform dimension reduction on the text data, and describe a procedure to characterize indirect effects via text when the text is only observed in one arm of the experiment.

pdf bib
A Survey of Online Hate Speech through the Causal Lens
Antigoni Founta | Lucia Specia

The societal issue of digital hostility has previously attracted a lot of attention. The topic counts an ample body of literature, yet remains prominent and challenging as ever due to its subjective nature. We posit that a better understanding of this problem will require the use of causal inference frameworks. This survey summarises the relevant research that revolves around estimations of causal effects related to online hate speech. Initially, we provide an argumentation as to why re-establishing the exploration of hate speech in causal terms is of the essence. Following that, we give an overview of the leading studies classified with respect to the direction of their outcomes, as well as an outline of all related research, and a summary of open research problems that can influence future work on the topic.

pdf bib
Identifying Causal Influences on Publication Trends and Behavior: A Case Study of the Computational Linguistics Community
Maria Glenski | Svitlana Volkova

Drawing causal conclusions from observational real-world data is a very much desired but a challenging task. In this paper we present mixed-method analyses to investigate causal influences of publication trends and behavior on the adoption, persistence and retirement of certain research foci – methodologies, materials, and tasks that are of interest to the computational linguistics (CL) community. Our key findings highlight evidence of the transition to rapidly emerging methodologies in the research community (e.g., adoption of bidirectional LSTMs influencing the retirement of LSTMs), the persistent engagement with trending tasks and techniques (e.g., deep learning, embeddings, generative, and language models), the effect of scientist location from outside the US e.g., China on propensity of researching languages beyond English, and the potential impact of funding for large-scale research programs. We anticipate this work to provide useful insights about publication trends and behavior and raise the awareness about the potential for causal inference in the computational linguistics and a broader scientific community.

pdf bib
It’s quality and quantity: the effect of the amount of comments on online suicidal posts
Daniel Low | Kelly Zuromski | Daniel Kessler | Satrajit S. Ghosh | Matthew K. Nock | Walter Dempsey

Every day, individuals post suicide notes on social media asking for support, resources, and reasons to live. Some posts receive few comments while others receive many. While prior studies have analyzed whether specific responses are more or less helpful, it is not clear if the quantity of comments received is beneficial in reducing symptoms or in keeping the user engaged with the platform and hence with life. In the present study, we create a large dataset of users’ first r/SuicideWatch (SW) posts from Reddit (N=21,274), collect the comments as well as the user’s subsequent posts (N=1,615,699) to determine whether they post in SW again in the future. We use propensity score stratification, a causal inference method for observational data, and estimate whether the amount of comments —as a measure of social support— increases or decreases the likelihood of posting again on SW. One hypothesis is that receiving more comments may decrease the likelihood of the user posting in SW in the future, either by reducing symptoms or because comments from untrained peers may be harmful. On the contrary, we find that receiving more comments increases the likelihood a user will post in SW again. We discuss how receiving more comments is helpful, not by permanently relieving symptoms since users make another SW post and their second posts have similar mentions of suicidal ideation, but rather by reinforcing users to seek support and remain engaged with the platform. Furthermore, since receiving only 1 comment —the most common case— decreases the likelihood of posting again by 14% on average depending on the time window, it is important to develop systems that encourage more commenting.


pdf (full)
bib (full)
Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access

pdf bib
Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access
Nazli Goharian | Philip Resnik | Andrew Yates | Molly Ireland | Kate Niederhoffer | Rebecca Resnik

pdf bib
Understanding who uses Reddit: Profiling individuals with a self-reported bipolar disorder diagnosis
Glorianna Jagfeld | Fiona Lobban | Paul Rayson | Steven Jones

Recently, research on mental health conditions using public online data, including Reddit, has surged in NLP and health research but has not reported user characteristics, which are important to judge generalisability of findings. This paper shows how existing NLP methods can yield information on clinical, demographic, and identity characteristics of almost 20K Reddit users who self-report a bipolar disorder diagnosis. This population consists of slightly more feminine- than masculine-gendered mainly young or middle-aged US-based adults who often report additional mental health diagnoses, which is compared with general Reddit statistics and epidemiological studies. Additionally, this paper carefully evaluates all methods and discusses ethical issues.

pdf bib
On the State of Social Media Data for Mental Health Research
Keith Harrigian | Carlos Aguirre | Mark Dredze

Data-driven methods for mental health treatment and surveillance have become a major focus in computational science research in the last decade. However, progress in the domain remains bounded by the availability of adequate data. Prior systematic reviews have not necessarily made it possible to measure the degree to which data-related challenges have affected research progress. In this paper, we offer an analysis specifically on the state of social media data that exists for conducting mental health research. We do so by introducing an open-source directory of mental health datasets, annotated using a standardized schema to facilitate meta-analysis.

pdf bib
Individual Differences in the Movement-Mood Relationship in Digital Life Data
Glen Coppersmith | Alex Fine | Patrick Crutchley | Joshua Carroll

Our increasingly digitized lives generate troves of data that reflect our behavior, beliefs, mood, and wellbeing. Such “digital life data” provides crucial insight into the lives of patients outside the healthcare setting that has long been lacking, from a better understanding of mundane patterns of exercise and sleep routines to harbingers of emotional crisis. Moreover, information about individual differences and personalities is encoded in digital life data. In this paper we examine the relationship between mood and movement using linguistic and biometric data, respectively. Does increased physical activity (movement) have an effect on a person’s mood (or vice-versa)? We find that weak group-level relationships between movement and mood mask interesting and often strong relationships between the two for individuals within the group. We describe these individual differences, and argue that individual variability in the relationship between movement and mood is one of many such factors that ought be taken into account in wellbeing-focused apps and AI systems.

pdf bib
Dissociating Semantic and Phonemic Search Strategies in the Phonemic Verbal Fluency Task in early Dementia
Hali Lindsay | Philipp Müller | Nicklas Linz | Radia Zeghari | Mario Magued Mina | Alexandra Konig | Johannes Tröger

Effective management of dementia hinges on timely detection and precise diagnosis of the underlying cause of the syndrome at an early mild cognitive impairment (MCI) stage. Verbal fluency tasks are among the most often applied tests for early dementia detection due to their efficiency and ease of use. In these tasks, participants are asked to produce as many words as possible belonging to either a semantic category (SVF task) or a phonemic category (PVF task). Even though both SVF and PVF share neurocognitive function profiles, the PVF is typically believed to be less sensitive to measure MCI-related cognitive impairment and recent research on fine-grained automatic evaluation of VF tasks has mainly focused on the SVF. Contrary to this belief, we show that by applying state-of-the-art semantic and phonemic distance metrics in automatic analysis of PVF word productions, in-depth conclusions about production strategy of MCI patients are possible. Our results reveal a dissociation between semantically- and phonemically-guided search processes in the PVF. Specifically, we show that subjects with MCI rely less on semantic- and more on phonemic processes to guide their word production as compared to healthy controls (HC). We further show that semantic similarity-based features improve automatic MCI versus HC classification by 29% over previous approaches for the PVF. As such, these results point towards the yet underexplored utility of the PVF for in-depth assessment of cognition in MCI.

pdf bib
Demonstrating the Reliability of Self-Annotated Emotion Data
Anton Malko | Cecile Paris | Andreas Duenser | Maria Kangas | Diego Molla | Ross Sparks | Stephen Wan

Vent is a specialised iOS/Android social media platform with the stated goal to encourage people to post about their feelings and explicitly label them. In this paper, we study a snapshot of more than 100 million messages obtained from the developers of Vent, together with the labels assigned by the authors of the messages. We establish the quality of the self-annotated data by conducting a qualitative analysis, a vocabulary based analysis, and by training and testing an emotion classifier. We conclude that the self-annotated labels of our corpus are indeed indicative of the emotional contents expressed in the text and thus can support more detailed analyses of emotion expression on social media, such as emotion trajectories and factors influencing them.

pdf bib
Hebrew Psychological Lexicons
Natalie Shapira | Dana Atzil-Slonim | Daniel Juravski | Moran Baruch | Dana Stolowicz-Melman | Adar Paz | Tal Alfi-Yogev | Roy Azoulay | Adi Singer | Maayan Revivo | Chen Dahbash | Limor Dayan | Tamar Naim | Lidar Gez | Boaz Yanai | Adva Maman | Adam Nadaf | Elinor Sarfati | Amna Baloum | Tal Naor | Ephraim Mosenkis | Badreya Sarsour | Jany Gelfand Morgenshteyn | Yarden Elias | Liat Braun | Moria Rubin | Matan Kenigsbuch | Noa Bergwerk | Noam Yosef | Sivan Peled | Coral Avigdor | Rahav Obercyger | Rachel Mann | Tomer Alper | Inbal Beka | Ori Shapira | Yoav Goldberg

We introduce a large set of Hebrew lexicons pertaining to psychological aspects. These lexicons are useful for various psychology applications such as detecting emotional state, well being, relationship quality in conversation, identifying topics (e.g., family, work) and many more. We discuss the challenges in creating and validating lexicons in a new language, and highlight our methodological considerations in the data-driven lexicon construction process. Most of the lexicons are publicly available, which will facilitate further research on Hebrew clinical psychology text analysis. The lexicons were developed through data driven means, and verified by domain experts, clinical psychologists and psychology students, in a process of reconciliation with three judges. Development and verification relied on a dataset of a total of 872 psychotherapy session transcripts. We describe the construction process of each collection, the final resource and initial results of research studies employing this resource.

pdf bib
Community-level Research on Suicidality Prediction in a Secure Environment: Overview of the CLPsych 2021 Shared Task
Sean MacAvaney | Anjali Mittu | Glen Coppersmith | Jeff Leintz | Philip Resnik

Progress on NLP for mental health — indeed, for healthcare in general — is hampered by obstacles to shared, community-level access to relevant data. We report on what is, to our knowledge, the first attempt to address this problem in mental health by conducting a shared task using sensitive data in a secure data enclave. Participating teams received access to Twitter posts donated for research, including data from users with and without suicide attempts, and did all work with the dataset entirely within a secure computational environment. We discuss the task, team results, and lessons learned to set the stage for future tasks on sensitive or confidential data.

pdf bib
Determining a Person’s Suicide Risk by Voting on the Short-Term History of Tweets for the CLPsych 2021 Shared Task
Ulya Bayram | Lamia Benhiba

In this shared task, we accept the challenge of constructing models to identify Twitter users who attempted suicide based on their tweets 30 and 182 days before the adverse event’s occurrence. We explore multiple machine learning and deep learning methods to identify a person’s suicide risk based on the short-term history of their tweets. Taking the real-life applicability of the model into account, we make the design choice of classifying on the tweet level. By voting the tweet-level suicide risk scores through an ensemble of classifiers, we predict the suicidal users 30-days before the event with an 81.8% true-positives rate. Meanwhile, the tweet-level voting falls short on the six-month-long data as the number of tweets with weak suicidal ideation levels weakens the overall suicidal signals in the long term.

pdf bib
Learning Models for Suicide Prediction from Social Media Posts
Ning Wang | Luo Fan | Yuvraj Shivtare | Varsha Badal | Koduvayur Subbalakshmi | Rajarathnam Chandramouli | Ellen Lee

We propose a deep learning architecture and test three other machine learning models to automatically detect individuals that will attempt suicide within (1) 30 days and (2) six months, using their social media post data provided in the CL-Psych-Challenge. Additionally, we create and extract three sets of handcrafted features for suicide detection based on the three-stage theory of suicide and prior work on emotions and the use of pronouns among persons exhibiting suicidal ideations. Extensive experimentations show that some of the traditional machine learning methods outperform the baseline with an F1 score of 0.741 and F2 score of 0.833 on subtask 1 (prediction of a suicide attempt 30 days prior). However, the proposed deep learning method outperforms the baseline with F1 score of 0.737 and F2 score of 0.843 on subtask2 (prediction of suicide 6 months prior).

pdf bib
Suicide Risk Prediction by Tracking Self-Harm Aspects in Tweets: NUS-IDS at the CLPsych 2021 Shared Task
Sujatha Das Gollapalli | Guilherme Augusto Zagatti | See-Kiong Ng

We describe our system for identifying users at-risk for suicide based on their tweets developed for the CLPsych 2021 Shared Task. Based on research in mental health studies linking self-harm tendencies with suicide, in our system, we attempt to characterize self-harm aspects expressed in user tweets over a period of time. To this end, we design SHTM, a Self-Harm Topic Model that combines Latent Dirichlet Allocation with a self-harm dictionary for modeling daily tweets of users. Next, differences in moods and topics over time are captured as features to train a deep learning model for suicide prediction.

pdf bib
Team 9: A Comparison of Simple vs. Complex Models for Suicide Risk Assessment
Michelle Morales | Prajjalita Dey | Kriti Kohli

This work presents the systems explored as part of the CLPsych 2021 Shared Task. More specifically, this work explores the relative performance of models trained on social me- dia data for suicide risk assessment. For this task, we aim to investigate whether or not simple traditional models can outperform more complex fine-tuned deep learning mod- els. Specifically, we build and compare a range of models including simple baseline models, feature-engineered machine learning models, and lastly, fine-tuned deep learning models. We find that simple more traditional machine learning models are more suited for this task and highlight the challenges faced when trying to leverage more sophisticated deep learning models.

pdf bib
Using Psychologically-Informed Priors for Suicide Prediction in the CLPsych 2021 Shared Task
Avi Gamoran | Yonatan Kaplan | Almog Simchon | Michael Gilead

This paper describes our approach to the CLPsych 2021 Shared Task, in which we aimed to predict suicide attempts based on Twitter feed data. We addressed this challenge by emphasizing reliance on prior domain knowledge. We engineered novel theory-driven features, and integrated prior knowledge with empirical evidence in a principled manner using Bayesian modeling. While this theory-guided approach increases bias and lowers accuracy on the training set, it was successful in preventing over-fitting. The models provided reasonable classification accuracy on unseen test data (0.68<=AUC<= 0.84). Our approach may be particularly useful in prediction tasks trained on a relatively small data set.

pdf bib
Analysis of Behavior Classification in Motivational Interviewing
Leili Tavabi | Trang Tran | Kalin Stefanov | Brian Borsari | Joshua Woolley | Stefan Scherer | Mohammad Soleymani

Analysis of client and therapist behavior in counseling sessions can provide helpful insights for assessing the quality of the session and consequently, the client’s behavioral outcome. In this paper, we study the automatic classification of standardized behavior codes (annotations) used for assessment of psychotherapy sessions in Motivational Interviewing (MI). We develop models and examine the classification of client behaviors throughout MI sessions, comparing the performance by models trained on large pretrained embeddings (RoBERTa) versus interpretable and expert-selected features (LIWC). Our best performing model using the pretrained RoBERTa embeddings beats the baseline model, achieving an F1 score of 0.66 in the subject-independent 3-class classification. Through statistical analysis on the classification results, we identify prominent LIWC features that may not have been captured by the model using pretrained embeddings. Although classification using LIWC features underperforms RoBERTa, our findings motivate the future direction of incorporating auxiliary tasks in the classification of MI codes.

pdf bib
Automatic Detection and Prediction of Psychiatric Hospitalizations From Social Media Posts
Zhengping Jiang | Jonathan Zomick | Sarah Ita Levitan | Mark Serper | Julia Hirschberg

We address the problem of predicting psychiatric hospitalizations using linguistic features drawn from social media posts. We formulate this novel task and develop an approach to automatically extract time spans of self-reported psychiatric hospitalizations. Using this dataset, we build predictive models of psychiatric hospitalization, comparing feature sets, user vs. post classification, and comparing model performance using a varying time window of posts. Our best model achieves an F1 of .718 using 7 days of posts. Our results suggest that this is a useful framework for collecting hospitalization data, and that social media data can be leveraged to predict acute psychiatric crises before they occur, potentially saving lives and improving outcomes for individuals with mental illness.

pdf bib
Automatic Identification of Ruptures in Transcribed Psychotherapy Sessions
Adam Tsakalidis | Dana Atzil-Slonim | Asaf Polakovski | Natalie Shapira | Rivka Tuval-Mashiach | Maria Liakata

We present the first work on automatically capturing alliance rupture in transcribed therapy sessions, trained on the text and self-reported rupture scores from both therapists and clients. Our NLP baseline outperforms a strong majority baseline by a large margin and captures client reported ruptures unidentified by therapists in 40% of such cases.

pdf bib
Automated coherence measures fail to index thought disorder in individuals at risk for psychosis
Kasia Hitczenko | Henry Cowan | Vijay Mittal | Matthew Goldrick

Thought disorder – linguistic disturbances including incoherence and derailment of topic – is seen in individuals both with and at risk for psychosis. Methods from computational linguistics have increasingly sought to quantify thought disorder to detect group differences between clinical populations and healthy controls. While previous work has been quite successful at these classification tasks, the lack of interpretability of the computational metrics has made it unclear whether they are in fact measuring thought disorder. In this paper, we dive into these measures to try to better understand what they reflect. While we find group differences between at-risk and healthy control populations, we also find that the measures mostly do not correlate with existing measures of thought disorder symptoms (what they are intended to measure), but rather correlate with surface properties of the speech (e.g., sentence length) and sociodemographic properties of the speaker (e.g., race). These results highlight the importance of considering interpretability and front and center as the field continues to grow. Ethical use of computational measures like those studied here – especially in the high-stakes context of clinical care – requires us to devote substantial attention to potential biases in our measures.

pdf bib
Detecting Cognitive Distortions from Patient-Therapist Interactions
Sagarika Shreevastava | Peter Foltz

An important part of Cognitive Behavioral Therapy (CBT) is to recognize and restructure certain negative thinking patterns that are also known as cognitive distortions. The aim of this project is to detect these distortions using natural language processing. We compare and contrast different types of linguistic features as well as different classification algorithms and explore the limitations of applying these techniques on a small dataset. We find that pre-trained Sentence-BERT embeddings to train an SVM classifier yields the best results with an F1-score of 0.79. Lastly, we discuss how this work provides insights into the types of linguistic features that are inherent in cognitive distortions.

pdf bib
Evaluating Automatic Speech Recognition Quality and Its Impact on Counselor Utterance Coding
Do June Min | Verónica Pérez-Rosas | Rada Mihalcea

Automatic speech recognition (ASR) is a crucial step in many natural language processing (NLP) applications, as often available data consists mainly of raw speech. Since the result of the ASR step is considered as a meaningful, informative input to later steps in the NLP pipeline, it is important to understand the behavior and failure mode of this step. In this work, we analyze the quality of ASR in the psychotherapy domain, using motivational interviewing conversations between therapists and clients. We conduct domain agnostic and domain-relevant evaluations using standard evaluation metrics and also identify domain-relevant keywords in the ASR output. Moreover, we empirically study the effect of mixing ASR and manual data during the training of a downstream NLP model, and also demonstrate how additional local context can help alleviate the error introduced by noisy ASR transcripts.

pdf bib
Qualitative Analysis of Depression Models by Demographics
Carlos Aguirre | Mark Dredze

Models for identifying depression using social media text exhibit biases towards different gender and racial/ethnic groups. Factors like representation and balance of groups within the dataset are contributory factors, but difference in content and social media use may further explain these biases. We present an analysis of the content of social media posts from different demographic groups. Our analysis shows that there are content differences between depression and control subgroups across demographic groups, and that temporal topics and demographic-specific topics are correlated with downstream depression model error. We discuss the implications of our work on creating future datasets, as well as designing and training models for mental health.

pdf bib
Safeguarding against spurious AI-based predictions: The case of automated verbal memory assessment
Chelsea Chandler | Peter Foltz | Alex Cohen | Terje Holmlund | Brita Elvevåg

A growing amount of psychiatric research incorporates machine learning and natural language processing methods, however findings have yet to be translated into actual clinical decision support systems. Many of these studies are based on relatively small datasets in homogeneous populations, which has the associated risk that the models may not perform adequately on new data in real clinical practice. The nature of serious mental illness is that it is hard to define, hard to capture, and requires frequent monitoring, which leads to imperfect data where attribute and class noise are common. With the goal of an effective AI-mediated clinical decision support system, there must be computational safeguards placed on the models used in order to avoid spurious predictions and thus allow humans to review data in the settings where models are unstable or bound not to generalize. This paper describes two approaches to implementing safeguards: (1) the determination of cases in which models are unstable by means of attribute and class based outlier detection and (2) finding the extent to which models show inductive bias. These safeguards are illustrated in the automated scoring of a story recall task via natural language processing methods. With the integration of human-in-the-loop machine learning in the clinical implementation process, incorporating safeguards such as these into the models will offer patients increased protection from spurious predictions.

pdf bib
Towards the Development of Speech-Based Measures of Stress Response in Individuals
Archna Bhatia | Toshiya Miyatsu | Peter Pirolli

Psychological and physiological stress in the environment can induce a different stress response in different individuals. Given the causal relationship between stress, mental health, and psychopathologies, as well as its impact on individuals’ executive functioning and performance, identifying the extent of stress response in individuals can be useful for providing targeted support to those who are in need. In this paper, we identify and validate features in speech that can be used as indicators of stress response in individuals to develop speech-based measures of stress response. We evaluate effectiveness of two types of tasks used for collecting speech samples in developing stress response measures, namely Read Speech Task and Open-Ended Question Task. Participants completed these tasks, along with the verbal fluency task (an established measure of executive functioning) before and after clinically validated stress induction to see if the changes in the speech-based features are associated with the stress-induced decline in executive functioning. Further, we supplement our analyses with an extensive, external assessment of the individuals’ stress tolerance in the real life to validate the usefulness of the speech-based measures in predicting meaningful outcomes outside of the experimental setting.

pdf bib
Towards Low-Resource Real-Time Assessment of Empathy in Counselling
Zixiu Wu | Rim Helaoui | Diego Reforgiato Recupero | Daniele Riboni

Gauging therapist empathy in counselling is an important component of understanding counselling quality. While session-level empathy assessment based on machine learning has been investigated extensively, it relies on relatively large amounts of well-annotated dialogue data, and real-time evaluation has been overlooked in the past. In this paper, we focus on the task of low-resource utterance-level binary empathy assessment. We train deep learning models on heuristically constructed empathy vs. non-empathy contrast in general conversations, and apply the models directly to therapeutic dialogues, assuming correlation between empathy manifested in those two domains. We show that such training yields poor performance in general, probe its causes, and examine the actual effect of learning from empathy contrast in general conversation.

pdf bib
Towards Understanding the Role of Gender in Deploying Social Media-Based Mental Health Surveillance Models
Eli Sherman | Keith Harrigian | Carlos Aguirre | Mark Dredze

Spurred by advances in machine learning and natural language processing, developing social media-based mental health surveillance models has received substantial recent attention. For these models to be maximally useful, it is necessary to understand how they perform on various subgroups, especially those defined in terms of protected characteristics. In this paper we study the relationship between user demographics – focusing on gender – and depression. Considering a population of Reddit users with known genders and depression statuses, we analyze the degree to which depression predictions are subject to biases along gender lines using domain-informed classifiers. We then study our models’ parameters to gain qualitative insight into the differences in posting behavior across genders.

pdf bib
Understanding Patterns of Anorexia Manifestations in Social Media Data with Deep Learning
Ana Sabina Uban | Berta Chulvi | Paolo Rosso

Eating disorders are a growing problem especially among young people, yet they have been under-studied in computational research compared to other mental health disorders such as depression. Computational methods have a great potential to aid with the automatic detection of mental health problems, but state-of-the-art machine learning methods based on neural networks are notoriously difficult to interpret, which is a crucial problem for applications in the mental health domain. We propose leveraging the power of deep learning models for automatically detecting signs of anorexia based on social media data, while at the same time focusing on interpreting their behavior. We train a hierarchical attention network to detect people with anorexia and use its internal encodings to discover different clusters of anorexia symptoms. We interpret the identified patterns from multiple perspectives, including emotion expression, psycho-linguistic features and personality traits, and we offer novel hypotheses to interpret our findings from a psycho-social perspective. Some interesting findings are patterns of word usage in some users with anorexia which show that they feel less as being part of a group compared to control cases, as well as that they have abandoned explanatory activity as a result of a greater feeling of helplessness and fear.


pdf (full)
bib (full)
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

pdf bib
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
Emmanuele Chersoni | Nora Hollenstein | Cassandra Jacobs | Yohei Oseki | Laurent Prévot | Enrico Santus

pdf bib
Non-Complementarity of Information in Word-Embedding and Brain Representations in Distinguishing between Concrete and Abstract Words
Kalyan Ramakrishnan | Fatma Deniz

Word concreteness and imageability have proven crucial in understanding how humans process and represent language in the brain. While word-embeddings do not explicitly incorporate the concreteness of words into their computations, they have been shown to accurately predict human judgments of concreteness and imageability. Inspired by the recent interest in using neural activity patterns to analyze distributed meaning representations, we first show that brain responses acquired while human subjects passively comprehend natural stories can significantly distinguish the concreteness levels of the words encountered. We then examine for the same task whether the additional perceptual information in the brain representations can complement the contextual information in the word-embeddings. However, the results of our predictive models and residual analyses indicate the contrary. We find that the relevant information in the brain representations is a subset of the relevant information in the contextualized word-embeddings, providing new insight into the existing state of natural language processing models.

pdf bib
Human Sentence Processing: Recurrence or Attention?
Danny Merkx | Stefan L. Frank

Recurrent neural networks (RNNs) have long been an architecture of interest for computational models of human sentence processing. The recently introduced Transformer architecture outperforms RNNs on many natural language processing tasks but little is known about its ability to model human language processing. We compare Transformer- and RNN-based language models’ ability to account for measures of human reading effort. Our analysis shows Transformers to outperform RNNs in explaining self-paced reading times and neural activity during reading English sentences, challenging the widely held idea that human sentence processing involves recurrent and immediate processing and provides evidence for cue-based retrieval.

pdf bib
Modeling Incremental Language Comprehension in the Brain with Combinatory Categorial Grammar
Miloš Stanojević | Shohini Bhattasali | Donald Dunagan | Luca Campanelli | Mark Steedman | Jonathan Brennan | John Hale

Hierarchical sentence structure plays a role in word-by-word human sentence comprehension, but it remains unclear how best to characterize this structure and unknown how exactly it would be recognized in a step-by-step process model. With a view towards sharpening this picture, we model the time course of hemodynamic activity within the brain during an extended episode of naturalistic language comprehension using Combinatory Categorial Grammar (CCG). CCG has well-defined incremental parsing algorithms, surface compositional semantics, and can explain long-range dependencies as well as complicated cases of coordination. We find that CCG-derived predictors improve a regression model of fMRI time course in six language-relevant brain regions, over and above predictors derived from context-free phrase structure. Adding a special Revealing operator to CCG parsing, one designed to handle right-adjunction, improves the fit in three of these regions. This evidence for CCG from neuroimaging bolsters the more general case for mildly context-sensitive grammars in the cognitive science of language.

pdf bib
A Multinomial Processing Tree Model of RC Attachment
Pavel Logacev | Noyan Dokudan

In the field of sentence processing, speakers’ preferred interpretation of ambiguous sentences are often determined using a variant of a discrete choice task, in which participants are asked to indicate their preferred meaning of an ambiguous sentence. We discuss participants’ degree of attentiveness as a potential source of bias and variability in such tasks. We show that it may distort the estimates of the preference of a particular interpretation obtained in such experiments and may thus complicate the interpretation of the results as well as the comparison of the results of several experiments. We propose an analysis method based on multinomial processing tree models (Batchelder and Riefer, 1999) which can correct for this bias and allows for a separation of parameters of theoretical importance from nuisance parameters. We test two variants of the MPT-based model on experimental data from English and Turkish and demonstrate that our method can provide deeper insight into the processes underlying participants’ answering behavior and their interpretation preferences than an analysis based on raw percentages.

pdf bib
That Looks Hard: Characterizing Linguistic Complexity in Humans and Language Models
Gabriele Sarti | Dominique Brunato | Felice Dell’Orletta

This paper investigates the relationship between two complementary perspectives in the human assessment of sentence complexity and how they are modeled in a neural language model (NLM). The first perspective takes into account multiple online behavioral metrics obtained from eye-tracking recordings. The second one concerns the offline perception of complexity measured by explicit human judgments. Using a broad spectrum of linguistic features modeling lexical, morpho-syntactic, and syntactic properties of sentences, we perform a comprehensive analysis of linguistic phenomena associated with the two complexity viewpoints and report similarities and differences. We then show the effectiveness of linguistic features when explicitly leveraged by a regression model for predicting sentence complexity and compare its results with the ones obtained by a fine-tuned neural language model. We finally probe the NLM’s linguistic competence before and after fine-tuning, highlighting how linguistic information encoded in representations changes when the model learns to predict complexity.

pdf bib
Accounting for Agreement Phenomena in Sentence Comprehension with Transformer Language Models: Effects of Similarity-based Interference on Surprisal and Attention
Soo Hyun Ryu | Richard Lewis

We advance a novel explanation of similarity-based interference effects in subject-verb and reflexive pronoun agreement processing, grounded in surprisal values computed from a pretrained large-scale Transformer model, GPT-2. Specifically, we show that surprisal of the verb or reflexive pronoun predicts facilitatory interference effects in ungrammatical sentences, where a distractor noun that matches in number with the verb or pronouns leads to faster reading times, despite the distractor not participating in the agreement relation. We review the human empirical evidence for such effects, including recent meta-analyses and large-scale studies. We also show that attention patterns (indexed by entropy and other measures) in the Transformer show patterns of diffuse attention in the presence of similar distractors, consistent with cue-based retrieval models of parsing. But in contrast to these models, the attentional cues and memory representations are learned entirely from the simple self-supervised task of predicting the next word.

pdf bib
CMCL 2021 Shared Task on Eye-Tracking Prediction
Nora Hollenstein | Emmanuele Chersoni | Cassandra L. Jacobs | Yohei Oseki | Laurent Prévot | Enrico Santus

Eye-tracking data from reading represent an important resource for both linguistics and natural language processing. The ability to accurately model gaze features is crucial to advance our understanding of language processing. This paper describes the Shared Task on Eye-Tracking Data Prediction, jointly organized with the eleventh edition of the Work- shop on Cognitive Modeling and Computational Linguistics (CMCL 2021). The goal of the task is to predict 5 different token- level eye-tracking metrics of the Zurich Cognitive Language Processing Corpus (ZuCo). Eye-tracking data were recorded during natural reading of English sentences. In total, we received submissions from 13 registered teams, whose systems include boosting algorithms with handcrafted features, neural models leveraging transformer language models, or hybrid approaches. The winning system used a range of linguistic and psychometric features in a gradient boosting framework.

pdf bib
LangResearchLab_NC at CMCL2021 Shared Task: Predicting Gaze Behaviour Using Linguistic Features and Tree Regressors
Raksha Agarwal | Niladri Chatterjee

Analysis of gaze data behaviour has gained momentum in recent years for different NLP applications. The present paper aims at modelling gaze data behaviour of tokens in the context of a sentence. We have experimented with various Machine Learning Regression Algorithms on a feature space comprising the linguistic features of the target tokens for prediction of five Eye-Tracking features. CatBoost Regressor performed the best and achieved fourth position in terms of MAE based accuracy measurement for the ZuCo Dataset.

pdf bib
TorontoCL at CMCL 2021 Shared Task: RoBERTa with Multi-Stage Fine-Tuning for Eye-Tracking Prediction
Bai Li | Frank Rudzicz

Eye movement data during reading is a useful source of information for understanding language comprehension processes. In this paper, we describe our submission to the CMCL 2021 shared task on predicting human reading patterns. Our model uses RoBERTa with a regression layer to predict 5 eye-tracking features. We train the model in two stages: we first fine-tune on the Provo corpus (another eye-tracking dataset), then fine-tune on the task data. We compare different Transformer models and apply ensembling methods to improve the performance. Our final submission achieves a MAE score of 3.929, ranking 3rd place out of 13 teams that participated in this shared task.

pdf bib
LAST at CMCL 2021 Shared Task: Predicting Gaze Data During Reading with a Gradient Boosting Decision Tree Approach
Yves Bestgen

A LightGBM model fed with target word lexical characteristics and features obtained from word frequency lists, psychometric data and bigram association measures has been optimized for the 2021 CMCL Shared Task on Eye-Tracking Data Prediction. It obtained the best performance of all teams on two of the five eye-tracking measures to predict, allowing it to rank first on the official challenge criterion and to outperform all deep-learning based systems participating in the challenge.

pdf bib
Team Ohio State at CMCL 2021 Shared Task: Fine-Tuned RoBERTa for Eye-Tracking Data Prediction
Byung-Doh Oh

This paper describes Team Ohio State’s approach to the CMCL 2021 Shared Task, the goal of which is to predict five eye-tracking features from naturalistic self-paced reading corpora. For this task, we fine-tune a pre-trained neural language model (RoBERTa; Liu et al., 2019) to predict each feature based on the contextualized representations. Moreover, motivated by previous eye-tracking studies, we include word length in characters and proportion of sentence processed as two additional input features. Our best model strongly outperforms the baseline and is also competitive with other systems submitted to the shared task. An ablation study shows that the word length feature contributes to making more accurate predictions, indicating the usefulness of features that are specific to the eye-tracking paradigm.

pdf bib
PIHKers at CMCL 2021 Shared Task: Cosine Similarity and Surprisal to Predict Human Reading Patterns.
Lavinia Salicchi | Alessandro Lenci

Eye-tracking psycholinguistic studies have revealed that context-word semantic coherence and predictability influence language processing. In this paper we show our approach to predict eye-tracking features from the ZuCo dataset for the shared task of the Cognitive Modeling and Computational Linguistics (CMCL2021) workshop. Using both cosine similarity and surprisal within a regression model, we significantly improved the baseline Mean Absolute Error computed among five eye-tracking features.

pdf bib
TALEP at CMCL 2021 Shared Task: Non Linear Combination of Low and High-Level Features for Predicting Eye-Tracking Data
Franck Dary | Alexis Nasr | Abdellah Fourtassi

In this paper we describe our contribution to the CMCL 2021 Shared Task, which consists in predicting 5 different eye tracking variables from English tokenized text. Our approach is based on a neural network that combines both raw textual features we extracted from the text and parser-based features that include linguistic predictions (e.g. part of speech) and complexity metrics (e.g., entropy of parsing). We found that both the features we considered as well as the architecture of the neural model that combined these features played a role in the overall performance. Our system achieved relatively high accuracy on the test data of the challenge and was ranked 2nd out of 13 competing teams and a total of 30 submissions.

pdf bib
MTL782_IITD at CMCL 2021 Shared Task: Prediction of Eye-Tracking Features Using BERT Embeddings and Linguistic Features
Shivani Choudhary | Kushagri Tandon | Raksha Agarwal | Niladri Chatterjee

Reading and comprehension are quintessentially cognitive tasks. Eye movement acts as a surrogate to understand which part of a sentence is critical to the process of comprehension. The aim of the shared task is to predict five eye-tracking features for a given word of the input sentence. We experimented with several models based on LGBM (Light Gradient Boosting Machine) Regression, ANN (Artificial Neural Network), and CNN (Convolutional Neural Network), using BERT embeddings and some combination of linguistic features. Our submission using CNN achieved an average MAE of 4.0639 and ranked 7th in the shared task. The average MAE was further lowered to 3.994 in post-task evaluation.

pdf bib
KonTra at CMCL 2021 Shared Task: Predicting Eye Movements by Combining BERT with Surface, Linguistic and Behavioral Information
Qi Yu | Aikaterini-Lida Kalouli | Diego Frassinelli

This paper describes the submission of the team KonTra to the CMCL 2021 Shared Task on eye-tracking prediction. Our system combines the embeddings extracted from a fine-tuned BERT model with surface, linguistic and behavioral features, resulting in an average mean absolute error of 4.22 across all 5 eye-tracking measures. We show that word length and features representing the expectedness of a word are consistently the strongest predictors across all 5 eye-tracking measures.

pdf bib
CogNLP-Sheffield at CMCL 2021 Shared Task: Blending Cognitively Inspired Features with Transformer-based Language Models for Predicting Eye Tracking Patterns
Peter Vickers | Rosa Wainwright | Harish Tayyar Madabushi | Aline Villavicencio

The CogNLP-Sheffield submissions to the CMCL 2021 Shared Task examine the value of a variety of cognitively and linguistically inspired features for predicting eye tracking patterns, as both standalone model inputs and as supplements to contextual word embeddings (XLNet). Surprisingly, the smaller pre-trained model (XLNet-base) outperforms the larger (XLNet-large), and despite evidence that multi-word expressions (MWEs) provide cognitive processing advantages, MWE features provide little benefit to either model.

pdf bib
Team ReadMe at CMCL 2021 Shared Task: Predicting Human Reading Patterns by Traditional Oculomotor Control Models and Machine Learning
Alisan Balkoca | Abdullah Algan | Cengiz Acarturk | Çağrı Çöltekin

This system description paper describes our participation in CMCL 2021 shared task on predicting human reading patterns. Our focus in this study is making use of well-known,traditional oculomotor control models and machine learning systems. We present experiments with a traditional oculomotor control model (the EZ Reader) and two machine learning models (a linear regression model and a re-current network model), as well as combining the two different models. In all experiments we test effects of features well-known in the literature for predicting reading patterns, such as frequency, word length and predictability. Our experiments support the earlier findings that such features are useful when combined. Furthermore, we show that although machine learning models perform better in comparison to traditional models, combination of both gives a consistent improvement for predicting multiple eye tracking variables during reading.

pdf bib
Enhancing Cognitive Models of Emotions with Representation Learning
Yuting Guo | Jinho D. Choi

We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions that can be used to computationally describe psychological models of emotions. Our framework integrates a contextualized embedding encoder with a multi-head probing model that enables to interpret dynamically learned representations optimized for an emotion classification task. Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions. Our layer analysis can derive an emotion graph to depict hierarchical relations among the emotions. Our emotion representations can be used to generate an emotion wheel directly comparable to the one from Plutchik’s model, and also augment the values of missing emotions in the PAD emotional state model.

pdf bib
Production vs Perception: The Role of Individuality in Usage-Based Grammar Induction
Jonathan Dunn | Andrea Nini

This paper asks whether a distinction between production-based and perception-based grammar induction influences either (i) the growth curve of grammars and lexicons or (ii) the similarity between representations learned from independent sub-sets of a corpus. A production-based model is trained on the usage of a single individual, thus simulating the grammatical knowledge of a single speaker. A perception-based model is trained on an aggregation of many individuals, thus simulating grammatical generalizations learned from exposure to many different speakers. To ensure robustness, the experiments are replicated across two registers of written English, with four additional registers reserved as a control. A set of three computational experiments shows that production-based grammars are significantly different from perception-based grammars across all conditions, with a steeper growth curve that can be explained by substantial inter-individual grammatical differences.

pdf bib
Clause Final Verb Prediction in Hindi: Evidence for Noisy Channel Model of Communication
Kartik Sharma | Niyati Bafna | Samar Husain

Verbal prediction has been shown to be critical during online comprehension of Subject-Object-Verb (SOV) languages. In this work we present three computational models to predict clause final verbs in Hindi given its prior arguments. The models differ in their use of prior context during the prediction process – the context is either noisy or noise-free. Model predictions are compared with the sentence completion data obtained from Hindi native speakers. Results show that models that assume noisy context outperform the noise-free model. In particular, a lossy context model that assumes prior context to be affected by predictability and recency captures the distribution of the predicted verb class and error sources best. The success of the predictability-recency lossy context model is consistent with the noisy channel hypothesis for sentence comprehension and supports the idea that the reconstruction of the context during prediction is driven by prior linguistic exposure. These results also shed light on the nature of the noise that affects the reconstruction process. Overall the results pose a challenge to the adaptability hypothesis that assumes use of noise-free preverbal context for robust verbal prediction.

pdf bib
Dependency Locality and Neural Surprisal as Predictors of Processing Difficulty: Evidence from Reading Times
Neil Rathi

This paper compares two influential theories of processing difficulty: Gibson (2000)’s Dependency Locality Theory (DLT) and Hale (2001)’s Surprisal Theory. While prior work has aimed to compare DLT and Surprisal Theory (see Demberg and Keller, 2008), they have not yet been compared using more modern and powerful methods for estimating surprisal and DLT integration cost. I compare estimated surprisal values from two models, an RNN and a Transformer neural network, as well as DLT integration cost from a hand-parsed treebank, to reading times from the Dundee Corpus. Our results for integration cost corroborate those of Demberg and Keller (2008), finding that it is a negative predictor of reading times overall and a strong positive predictor for nouns, but contrast with their observations for surprisal, finding strong evidence for lexicalized surprisal as a predictor of reading times. Ultimately, I conclude that a broad-coverage model must integrate both theories in order to most accurately predict processing difficulty.

pdf bib
Modeling Sentence Comprehension Deficits in Aphasia: A Computational Evaluation of the Direct-access Model of Retrieval
Paula Lissón | Dorothea Pregla | Dario Paape | Frank Burchert | Nicole Stadie | Shravan Vasishth

Several researchers have argued that sentence comprehension is mediated via a content-addressable retrieval mechanism that allows fast and direct access to memory items. Initially failed retrievals can result in backtracking, which leads to correct retrieval. We present an augmented version of the direct-access model that allows backtracking to fail. Based on self-paced listening data from individuals with aphasia, we compare the augmented model to the base model without backtracking failures. The augmented model shows quantitatively similar performance to the base model, but only the augmented model can account for slow incorrect responses. We argue that the modified direct-access model is theoretically better suited to fit data from impaired populations.

pdf bib
Sentence Complexity in Context
Benedetta Iavarone | Dominique Brunato | Felice Dell’Orletta

We study the influence of context on how humans evaluate the complexity of a sentence in English. We collect a new dataset of sentences, where each sentence is rated for perceived complexity within different contextual windows. We carry out an in-depth analysis to detect which linguistic features correlate more with complexity judgments and with the degree of agreement among annotators. We train several regression models, using either explicit linguistic features or contextualized word embeddings, to predict the mean complexity values assigned to sentences in the different contextual windows, as well as their standard deviation. Results show that models leveraging explicit features capturing morphosyntactic and syntactic phenomena perform always better, especially when they have access to features extracted from all contextual sentences.

pdf bib
Evaluating the Acquisition of Semantic Knowledge from Cross-situational Learning in Artificial Neural Networks
Mitja Nikolaus | Abdellah Fourtassi

When learning their native language, children acquire the meanings of words and sentences from highly ambiguous input without much explicit supervision. One possible learning mechanism is cross-situational learning, which has been successfully tested in laboratory experiments with children. Here we use Artificial Neural Networks to test if this mechanism scales up to more natural language and visual scenes using a large dataset of crowd-sourced images with corresponding descriptions. We evaluate learning using a series of tasks inspired by methods commonly used in laboratory studies of language acquisition. We show that the model acquires rich semantic knowledge both at the word- and sentence-level, mirroring the patterns and trajectory of learning in early childhood. Our work highlights the usefulness of low-level co-occurrence statistics across modalities in facilitating the early acquisition of higher-level semantic knowledge.

pdf bib
Representation and Pre-Activation of Lexical-Semantic Knowledge in Neural Language Models
Steven Derby | Paul Miller | Barry Devereux

In this paper, we perform a systematic analysis of how closely the intermediate layers from LSTM and trans former language models correspond to human semantic knowledge. Furthermore, in order to make more meaningful comparisons with theories of human language comprehension in psycholinguistics, we focus on two key stages where the meaning of a particular target word may arise: immediately before the word’s presentation to the model (comparable to forward inferencing), and immediately after the word token has been input into the network. Our results indicate that the transformer models are better at capturing semantic knowledge relating to lexical concepts, both during word prediction and when retention is required.

pdf bib
Relation Classification with Cognitive Attention Supervision
Erik McGuire | Noriko Tomuro

Many current language models such as BERT utilize attention mechanisms to transform sequence representations. We ask whether we can influence BERT’s attention with human reading patterns by using eye-tracking and brain imaging data. We fine-tune BERT for relation extraction with auxiliary attention supervision in which BERT’s attention weights are supervised by cognitive data. Through a variety of metrics we find that this attention supervision can be used to increase similarity between model attention distributions over sequences and the cognitive data without significantly affecting classification performance while making unique errors from the baseline. In particular, models with cognitive attention supervision more often correctly classified samples misclassified by the baseline.

pdf bib
Graph-theoretic Properties of the Class of Phonological Neighbourhood Networks
Rory Turnbull

This paper concerns the structure of phonological neighbourhood networks, which are a graph-theoretic representation of the phonological lexicon. These networks represent each word as a node and links are placed between words which are phonological neighbours, usually defined as a string edit distance of one. Phonological neighbourhood networks have been used to study many aspects of the mental lexicon and psycholinguistic theories of speech production and perception. This paper offers preliminary graph-theoretic observations about phonological neighbourhood networks considered as a class. To aid this exploration, this paper introduces the concept of the hyperlexicon, the network consisting of all possible words for a given symbol set and their neighbourhood relations. The construction of the hyperlexicon is discussed, and basic properties are derived. This work is among the first to directly address the nature of phonological neighbourhood networks from an analytic perspective.

pdf bib
Contributions of Propositional Content and Syntactic Category Information in Sentence Processing
Byung-Doh Oh | William Schuler

Expectation-based theories of sentence processing posit that processing difficulty is determined by predictability in context. While predictability quantified via surprisal has gained empirical support, this representation-agnostic measure leaves open the question of how to best approximate the human comprehender’s latent probability model. This work presents an incremental left-corner parser that incorporates information about both propositional content and syntactic categories into a single probability model. This parser can be trained to make parsing decisions conditioning on only one source of information, thus allowing a clean ablation of the relative contribution of propositional content and syntactic category information. Regression analyses show that surprisal estimates calculated from the full parser make a significant contribution to predicting self-paced reading times over those from the parser without syntactic category information, as well as a significant contribution to predicting eye-gaze durations over those from the parser without propositional content information. Taken together, these results suggest a role for propositional content and syntactic category information in incremental sentence processing.


bib (full) Proceedings of the 2nd Workshop on Computational Approaches to Discourse

pdf bib
Proceedings of the 2nd Workshop on Computational Approaches to Discourse
Chloé Braud | Christian Hardmeier | Junyi Jessy Li | Annie Louis | Michael Strube | Amir Zeldes

pdf bib
I’ll be there for you”: The One with Understanding Indirect Answers
Cathrine Damgaard | Paulina Toborek | Trine Eriksen | Barbara Plank

Indirect answers are replies to polar questions without the direct use of word cues such as ‘yes’ and ‘no’. Humans are very good at understanding indirect answers, such as ‘I gotta go home sometime’, when asked ‘You wanna crash on the couch?’. Understanding indirect answers is a challenging problem for dialogue systems. In this paper, we introduce a new English corpus to study the problem of understanding indirect answers. Instead of crowd-sourcing both polar questions and answers, we collect questions and indirect answers from transcripts of a prominent TV series and manually annotate them for answer type. The resulting dataset contains 5,930 question-answer pairs. We release both aggregated and raw human annotations. We present a set of experiments in which we evaluate Convolutional Neural Networks (CNNs) for this task, including a cross-dataset evaluation and experiments with learning from disagreements in annotation. Our results show that the task of interpreting indirect answers remains challenging, yet we obtain encouraging improvements when explicitly modeling human disagreement.

pdf bib
Developing Conversational Data and Detection of Conversational Humor in Telugu
Vaishnavi Pamulapati | Radhika Mamidi

In the field of humor research, there has been a recent surge of interest in the sub-domain of Conversational Humor (CH). This study has two main objectives. (a) develop a conversational (humorous and non-humorous) dataset in Telugu. (b) detect CH in the compiled dataset. In this paper, the challenges faced while collecting the data and experiments carried out are elucidated. Transfer learning and non-transfer learning techniques are implemented by utilizing pre-trained models such as FastText word embeddings, BERT language models and Text GCN, which learns the word and document embeddings simultaneously of the corpus given. State-of-the-art results are observed with a 99.3% accuracy and a 98.5% f1 score achieved by BERT.

pdf bib
Investigating non lexical markers of the language of schizophrenia in spontaneous conversations
Chuyuan Li | Maxime Amblard | Chloé Braud | Caroline Demily | Nicolas Franck | Michel Musiol

We investigate linguistic markers associated with schizophrenia in clinical conversations by detecting predictive features among French-speaking patients. Dealing with human-human dialogues makes for a realistic situation, but it calls for strategies to represent the context and face data sparsity. We compare different approaches for data representation – from individual speech turns to entire conversations –, and data modeling, using lexical, morphological, syntactic, and discourse features, dimensions presumed to be tightly connected to the language of schizophrenia. Previous English models were mostly lexical and reached high performance, here replicated (93.7% acc.). However, our analysis reveals that these models are heavily biased, which probably concerns most datasets on this task. Our new delexicalized models are more general and robust, with the best accuracy score at 77.9%.

pdf bib
Discourse-Driven Integrated Dialogue Development Environment for Open-Domain Dialogue Systems
Denis Kuznetsov | Dmitry Evseev | Lidia Ostyakova | Oleg Serikov | Daniel Kornev | Mikhail Burtsev

Development environments for spoken dialogue systems are popular today because they enable rapid creation of the dialogue systems in times when usage of the voice AI Assistants is constantly growing. We describe a graphical Discourse-Driven Integrated Dialogue Development Environment (DD-IDDE) for spoken open-domain dialogue systems. The DD-IDDE allows dialogue architects to interactively define dialogue flows of their skills/chatbots with the aid of the discourse-driven recommendation system, enhance these flows in the Python-based DSL, deploy, and then further improve based on the skills/chatbots usage statistics. We show how these skills/chatbots can be specified through a graphical user interface within the VS Code Extension, and then run on top of the Dialog Flow Framework (DFF). An earlier version of this framework has been adopted in one of the Alexa Prize 4 socialbots while the updated version was specifically designed to power the described DD-IDDE solution.

pdf bib
Coreference Chains Categorization by Sequence Clustering
Silvia Federzoni | Lydia-Mai Ho-Dac | Cécile Fabre

The diversity of coreference chains is usually tackled by means of global features (length, types and number of referring expressions, distance between them, etc.). In this paper, we propose a novel approach that provides a description of their composition in terms of sequences of expressions. To this end, we apply sequence analysis techniques to bring out the various strategies for introducing a referent and keeping it active throughout discourse. We discuss a first application of this method to a French written corpus annotated with coreference chains. We obtain clusters that are linguistically coherent and interpretable in terms of reference strategies and we demonstrate the influence of text genre and semantic type of the referent on chain composition.

pdf bib
Resolving Implicit References in Instructional Texts
Talita Anthonio | Michael Roth

The usage of (co-)referring expressions in discourse contributes to the coherence of a text. However, text comprehension can be difficult when referring expressions are non-verbalized and have to be resolved in the discourse context. In this paper, we propose a novel dataset of such implicit references, which we automatically derive from insertions of references in collaboratively edited how-to guides. Our dataset consists of 6,014 instances, making it one of the largest datasets of implicit references and a useful starting point to investigate misunderstandings caused by underspecified language. We test different methods for resolving implicit references in our dataset based on the Generative Pre-trained Transformer model (GPT) and compare them to heuristic baselines. Our experiments indicate that GPT can accurately resolve the majority of implicit references in our data. Finally, we investigate remaining errors and examine human preferences regarding different resolutions of an implicit reference given the discourse context.

pdf bib
A practical perspective on connective generation
Frances Yung | Merel Scholman | Vera Demberg

In data-driven natural language generation, we typically know what relation should be expressed and need to select a connective to lexicalize it. In the current contribution, we analyse whether a sophisticated connective generation module is necessary to select a connective, or whether this can be solved with simple methods (such as random choice between connectives that are known to express a given relation, or usage of a generic language model). Comparing these methods to the distributions of connective choices from a human connective insertion task, we find mixed results: for some relations, it is acceptable to lexicalize them using any of the connectives that mark this relation. However, for other relations (temporals, concessives) either a more detailed relation distinction needs to be introduced, or a more sophisticated connective choice module would be necessary.

pdf bib
Semi-automatic discourse annotation in a low-resource language: Developing a connective lexicon for Nigerian Pidgin
Marian Marchal | Merel Scholman | Vera Demberg

Cross-linguistic research on discourse structure and coherence marking requires discourse-annotated corpora and connective lexicons in a large number of languages. However, the availability of such resources is limited, especially for languages for which linguistic resources are scarce in general, such as Nigerian Pidgin. In this study, we demonstrate how a semi-automatic approach can be used to source connectives and their relation senses and develop a discourse-annotated corpus in a low-resource language. Connectives and their relation senses were extracted from a parallel corpus combining automatic (PDTB end-to-end parser) and manual annotations. This resulted in Naija-Lex, a lexicon of discourse connectives in Nigerian Pidgin with English translations. The lexicon shows that the majority of Nigerian Pidgin connectives are borrowed from its English lexifier, but that there are also some connectives that are unique to Nigerian Pidgin.

pdf bib
Comparison of methods for explicit discourse connective identification across various domains
Merel Scholman | Tianai Dong | Frances Yung | Vera Demberg

Existing parse methods use varying approaches to identify explicit discourse connectives, but their performance has not been consistently evaluated in comparison to each other, nor have they been evaluated consistently on text other than newspaper articles. We here assess the performance on explicit connective identification of three parse methods (PDTB e2e, Lin et al., 2014; the winner of CONLL2015, Wang et al., 2015; and DisSent, Nie et al., 2019), along with a simple heuristic. We also examine how well these systems generalize to different datasets, namely written newspaper text (PDTB), written scientific text (BioDRB), prepared spoken text (TED-MDB) and spontaneous spoken text (Disco-SPICE). The results show that the e2e parser outperforms the other parse methods in all datasets. However, performance drops significantly from the PDTB to all other datasets. We provide a more fine-grained analysis of domain differences and connectives that prove difficult to parse, in order to highlight the areas where gains can be made.

pdf bib
Revisiting Shallow Discourse Parsing in the PDTB-3: Handling Intra-sentential Implicits
Zheng Zhao | Bonnie Webber

In the PDTB-3, several thousand implicit discourse relations were newly annotated within individual sentences, adding to the over 15,000 implicit relations annotated across adjacent sentences in the PDTB-2. Given that the position of the arguments to these intra-sentential implicits is no longer as well-defined as with inter-sentential implicits, a discourse parser must identify both their location and their sense. That is the focus of the current work. The paper provides a comprehensive analysis of our results, showcasing model performance under different scenarios, pointing out limitations and noting future directions.

pdf bib
Improving Multi-Party Dialogue Discourse Parsing via Domain Integration
Zhengyuan Liu | Nancy Chen

While multi-party conversations are often less structured than monologues and documents, they are implicitly organized by semantic level correlations across the interactive turns, and dialogue discourse analysis can be applied to predict the dependency structure and relations between the elementary discourse units, and provide feature-rich structural information for downstream tasks. However, the existing corpora with dialogue discourse annotation are collected from specific domains with limited sample sizes, rendering the performance of data-driven approaches poor on incoming dialogues without any domain adaptation. In this paper, we first introduce a Transformer-based parser, and assess its cross-domain performance. We next adopt three methods to gain domain integration from both data and language modeling perspectives to improve the generalization capability. Empirical results show that the neural parser can benefit from our proposed methods, and performs better on cross-domain dialogue samples.

pdf bib
discopy: A Neural System for Shallow Discourse Parsing
René Knaebel

This paper demonstrates discopy, a novel framework that makes it easy to design components for end-to-end shallow discourse parsing. For the purpose of demonstration, we implement recent neural approaches and integrate contextualized word embeddings to predict explicit and non-explicit discourse relations. Our proposed neural feature-free system performs competitively to systems presented at the latest Shared Task on Shallow Discourse Parsing. Finally, a web front end is shown that simplifies the inspection of annotated documents. The source code, documentation, and pretrained models are publicly accessible.

pdf bib
Tracing variation in discourse connectives in translation and interpreting through neural semantic spaces
Ekaterina Lapshinova-Koltunski | Heike Przybyl | Yuri Bizzoni

In the present paper, we explore lexical contexts of discourse markers in translation and interpreting on the basis of word embeddings. Our special interest is on contextual variation of the same discourse markers in (written) translation vs. (simultaneous) interpreting. To explore this variation at the lexical level, we use a data-driven approach: we compare bilingual neural word embeddings trained on source-to-translation and source-to-interpreting aligned corpora. Our results show more variation of semantically related items in translation spaces vs. interpreting ones and a more consistent use of fewer connectives in interpreting. We also observe different trends with regard to the discourse relation types.

pdf bib
Capturing document context inside sentence-level neural machine translation models with self-training
Elman Mansimov | Gábor Melis | Lei Yu

Neural machine translation (NMT) has arguably achieved human level parity when trained and evaluated at the sentence-level. Document-level neural machine translation has received less attention and lags behind its sentence-level counterpart. The majority of the proposed document-level approaches investigate ways of conditioning the model on several source or target sentences to capture document context. These approaches require training a specialized NMT model from scratch on parallel document-level corpora. We propose an approach that doesn’t require training a specialized model on parallel document-level corpora and is applied to a trained sentence-level NMT model at decoding time. We process the document from left to right multiple times and self-train the sentence-level model on pairs of source sentences and generated translations. Our approach reinforces the choices made by the model, thus making it more likely that the same choices will be made in other sentences in the document. We evaluate our approach on three document-level datasets: NIST Chinese-English, WMT19 Chinese-English and OpenSubtitles English-Russian. We demonstrate that our approach has higher BLEU score and higher human preference than the baseline. Qualitative analysis of our approach shows that choices made by model are consistent across the document.

pdf bib
DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing
Zhengyuan Liu | Ke Shi | Nancy Chen

Text discourse parsing weighs importantly in understanding information flow and argumentative structure in natural language, making it beneficial for downstream tasks. While previous work significantly improves the performance of RST discourse parsing, they are not readily applicable to practical use cases: (1) EDU segmentation is not integrated into most existing tree parsing frameworks, thus it is not straightforward to apply such models on newly-coming data. (2) Most parsers cannot be used in multilingual scenarios, because they are developed only in English. (3) Parsers trained from single-domain treebanks do not generalize well on out-of-domain inputs. In this work, we propose a document-level multilingual RST discourse parsing framework, which conducts EDU segmentation and discourse tree parsing jointly. Moreover, we propose a cross-translation augmentation strategy to enable the framework to support multilingual parsing and improve its domain generality. Experimental results show that our model achieves state-of-the-art performance on document-level multilingual RST parsing in all sub-tasks.

pdf bib
Visualizing Cross‐Lingual Discourse Relations in Multilingual TED Corpora
Zae Myung Kim | Vassilina Nikoulina | Dongyeop Kang | Didier Schwab | Laurent Besacier

This paper presents an interactive data dashboard that provides users with an overview of the preservation of discourse relations among 28 language pairs. We display a graph network depicting the cross-lingual discourse relations between a pair of languages for multilingual TED talks and provide a search function to look for sentences with specific keywords or relation types, facilitating ease of analysis on the cross-lingual discourse relations.


bib (full) Proceedings of the CODI-CRAC 2021 Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue

pdf bib
Proceedings of the CODI-CRAC 2021 Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue
Sopan Khosla | Ramesh Manuvinakurike | Vincent Ng | Massimo Poesio | Michael Strube | Carolyn Rosé

pdf bib
The CODI-CRAC 2021 Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue
Sopan Khosla | Juntao Yu | Ramesh Manuvinakurike | Vincent Ng | Massimo Poesio | Michael Strube | Carolyn Rosé

In this paper, we provide an overview of the CODI-CRAC 2021 Shared-Task: Anaphora Resolution in Dialogue. The shared task focuses on detecting anaphoric relations in different genres of conversations. Using five conversational datasets, four of which have been newly annotated with a wide range of anaphoric relations: identity, bridging references and discourse deixis, we defined multiple subtasks focusing individually on these key relations. We discuss the evaluation scripts used to assess the system performance on these subtasks, and provide a brief summary of the participating systems and the results obtained across ?? runs from 5 teams, with most submissions achieving significantly better results than our baseline methods.

pdf bib
Neural Anaphora Resolution in Dialogue
Hideo Kobayashi | Shengjie Li | Vincent Ng

We describe the systems that we developed for the three tracks of the CODI-CRAC 2021 shared task, namely entity coreference resolution, bridging resolution, and discourse deixis resolution. Our team ranked second for entity coreference resolution, first for bridging resolution, and first for discourse deixis resolution.

pdf bib
Anaphora Resolution in Dialogue: Description of the DFKI-TalkingRobots System for the CODI-CRAC 2021 Shared-Task
Tatiana Anikina | Cennet Oguz | Natalia Skachkova | Siyu Tao | Sharmila Upadhyaya | Ivana Kruijff-Korbayova

We describe the system developed by the DFKI-TalkingRobots Team for the CODI-CRAC 2021 Shared-Task on anaphora resolution in dialogue. Our system consists of three subsystems: (1) the Workspace Coreference System (WCS) incrementally clusters mentions using semantic similarity based on embeddings combined with lexical feature heuristics; (2) the Mention-to-Mention (M2M) coreference resolution system pairs same entity mentions; (3) the Discourse Deixis Resolution (DDR) system employs a Siamese Network to detect discourse anaphor-antecedent pairs. WCS achieved F1-score of 55.6% averaged across the evaluation test sets, M2M achieved 57.2% and DDR achieved 21.5%.

pdf bib
The Pipeline Model for Resolution of Anaphoric Reference and Resolution of Entity Reference
Hongjin Kim | Damrin Kim | Harksoo Kim

The objective of anaphora resolution in dialogue shared-task is to go above and beyond the simple cases of coreference resolution in written text on which NLP has mostly focused so far, which arguably overestimate the performance of current SOTA models. The anaphora resolution in dialogue shared-task consists of three subtasks; subtask1, resolution of anaphoric identity and non-referring expression identification, subtask2, resolution of bridging references, and subtask3, resolution of discourse deixis/abstract anaphora. In this paper, we propose the pipelined model (i.e., a resolution of anaphoric identity and a resolution of bridging references) for the subtask1 and the subtask2. In the subtask1, our model detects mention via the parentheses prediction. Then, we yield mention representation using the token representation constituting the mention. Mention representation is fed to the coreference resolution model for clustering. In the subtask2, our model resolves bridging references via the MRC framework. We construct query for each entity as “What is related of ENTITY?”. The input of our model is query and documents(i.e., all utterances of dialogue). Then, our model predicts entity span that is answer for query.

pdf bib
An End-to-End Approach for Full Bridging Resolution
Joseph Renner | Priyansh Trivedi | Gaurav Maheshwari | Rémi Gilleron | Pascal Denis

In this article, we describe our submission to the CODI-CRAC 2021 Shared Task on Anaphora Resolution in Dialogues – Track BR (Gold). We demonstrate the performance of an end-to-end transformer-based higher-order coreference model finetuned for the task of full bridging. We find that while our approach is not effective at modeling the complexities of the task, it performs well on bridging resolution, suggesting a need for investigations into a robust anaphor identification model for future improvements.

pdf bib
Adapted End-to-End Coreference Resolution System for Anaphoric Identities in Dialogues
Liyan Xu | Jinho D. Choi

We present an effective system adapted from the end-to-end neural coreference resolution model, targeting on the task of anaphora resolution in dialogues. Three aspects are specifically addressed in our approach, including the support of singletons, encoding speakers and turns throughout dialogue interactions, and knowledge transfer utilizing existing resources. Despite the simplicity of our adaptation strategies, they are shown to bring significant impact to the final performance, with up to 27 F1 improvement over the baseline. Our final system ranks the 1st place on the leaderboard of the anaphora resolution track in the CRAC 2021 shared task, and achieves the best evaluation results on all four datasets.

pdf bib
Anaphora Resolution in Dialogue: Cross-Team Analysis of the DFKI-TalkingRobots Team Submissions for the CODI-CRAC 2021 Shared-Task
Natalia Skachkova | Cennet Oguz | Tatiana Anikina | Siyu Tao | Sharmila Upadhyaya | Ivana Kruijff-Korbayova

We compare our team’s systems to others submitted for the CODI-CRAC 2021 Shared-Task on anaphora resolution in dialogue. We analyse the architectures and performance, report some problematic cases in gold annotations, and suggest possible improvements of the systems, their evaluation, data annotation, and the organization of the shared task.

pdf bib
The CODI-CRAC 2021 Shared Task on Anaphora, Bridging, and Discourse Deixis Resolution in Dialogue: A Cross-Team Analysis
Shengjie Li | Hideo Kobayashi | Vincent Ng

The CODI-CRAC 2021 shared task is the first shared task that focuses exclusively on anaphora resolution in dialogue and provides three tracks, namely entity coreference resolution, bridging resolution, and discourse deixis resolution. We perform a cross-task analysis of the systems that participated in the shared task in each of these tracks.


bib (full) Proceedings of the 25th Conference on Computational Natural Language Learning

pdf bib
Proceedings of the 25th Conference on Computational Natural Language Learning
Arianna Bisazza | Omri Abend

pdf bib
“It’s our fault!”: Insights Into Users’ Understanding and Interaction With an Explanatory Collaborative Dialog System
Katharina Weitz | Lindsey Vanderlyn | Ngoc Thang Vu | Elisabeth André

Human-AI collaboration, a long standing goal in AI, refers to a partnership where a human and artificial intelligence work together towards a shared goal. Collaborative dialog allows human-AI teams to communicate and leverage strengths from both partners. To design collaborative dialog systems, it is important to understand what mental models users form about their AI-dialog partners, however, how users perceive these systems is not fully understood. In this study, we designed a novel, collaborative, communication-based puzzle game and explanatory dialog system. We created a public corpus from 117 conversations and post-surveys and used this to analyze what mental models users formed. Key takeaways include: Even when users were not engaged in the game, they perceived the AI-dialog partner as intelligent and likeable, implying they saw it as a partner separate from the game. This was further supported by users often overestimating the system’s abilities and projecting human-like attributes which led to miscommunications. We conclude that creating shared mental models between users and AI systems is important to achieving successful dialogs. We propose that our insights on mental models and miscommunication, the game, and our corpus provide useful tools for designing collaborative dialog systems.

pdf bib
Dependency Induction Through the Lens of Visual Perception
Ruisi Su | Shruti Rijhwani | Hao Zhu | Junxian He | Xinyu Wang | Yonatan Bisk | Graham Neubig

Most previous work on grammar induction focuses on learning phrasal or dependency structure purely from text. However, because the signal provided by text alone is limited, recently introduced visually grounded syntax models make use of multimodal information leading to improved performance in constituency grammar induction. However, as compared to dependency grammars, constituency grammars do not provide a straightforward way to incorporate visual information without enforcing language-specific heuristics. In this paper, we propose an unsupervised grammar induction model that leverages word concreteness and a structural vision-based heuristic to jointly learn constituency-structure and dependency-structure grammars. Our experiments find that concreteness is a strong indicator for learning dependency grammars, improving the direct attachment score (DAS) by over 50% as compared to state-of-the-art models trained on pure text. Next, we propose an extension of our model that leverages both word concreteness and visual semantic role labels in constituency and dependency parsing. Our experiments show that the proposed extension outperforms the current state-of-the-art visually grounded models in constituency parsing even with a smaller grammar size.

pdf bib
VQA-MHUG: A Gaze Dataset to Study Multimodal Neural Attention in Visual Question Answering
Ekta Sood | Fabian Kögel | Florian Strohm | Prajit Dhar | Andreas Bulling

We present VQA-MHUG – a novel 49-participant dataset of multimodal human gaze on both images and questions during visual question answering (VQA) collected using a high-speed eye tracker. We use our dataset to analyze the similarity between human and neural attentive strategies learned by five state-of-the-art VQA models: Modular Co-Attention Network (MCAN) with either grid or region features, Pythia, Bilinear Attention Network (BAN), and the Multimodal Factorized Bilinear Pooling Network (MFB). While prior work has focused on studying the image modality, our analyses show – for the first time – that for all models, higher correlation with human attention on text is a significant predictor of VQA performance. This finding points at a potential for improving VQA performance and, at the same time, calls for further research on neural text attention mechanisms and their integration into architectures for vision and language tasks, including but potentially also beyond VQA.

pdf bib
“It seemed like an annoying woman”: On the Perception and Ethical Considerations of Affective Language in Text-Based Conversational Agents
Lindsey Vanderlyn | Gianna Weber | Michael Neumann | Dirk Väth | Sarina Meyer | Ngoc Thang Vu

Previous research has found that task-oriented conversational agents are perceived more positively by users when they provide information in an empathetic manner compared to a plain, emotionless information exchange. However, users’ perception and ethical considerations related to a dialog systems’ response language style have received comparatively little attention in the field of human-computer interaction. To bridge this gap, we explored these ethical implications through a scenario-based user study. 127 participants interacted with one of three variants of an affective, task-oriented conversational agent, each variant providing responses in a different language style. After the interaction, participants filled out a survey about their feelings during the experiment and their perception of various aspects of the chatbot. Based on statistical and qualitative analysis of the responses, we found language style played an important role in how human-like participants perceived a dialog agent as well as how likable. Language style also had a direct effect on how users perceived the use of personal pronouns ‘I’ and ‘You’ and how they projected gender onto the chatbot. Finally, we identify and discuss ethical implications. In particular we focus on what factors/stereotypes influenced participants’ impressions of gender, and what trade-offs a more human-like chatbot brings.

pdf bib
On Language Models for Creoles
Heather Lent | Emanuele Bugliarello | Miryam de Lhoneux | Chen Qiu | Anders Søgaard

Creole languages such as Nigerian Pidgin English and Haitian Creole are under-resourced and largely ignored in the NLP literature. Creoles typically result from the fusion of a foreign language with multiple local languages, and what grammatical and lexical features are transferred to the creole is a complex process. While creoles are generally stable, the prominence of some features may be much stronger with certain demographics or in some linguistic situations. This paper makes several contributions: We collect existing corpora and release models for Haitian Creole, Nigerian Pidgin English, and Singaporean Colloquial English. We evaluate these models on intrinsic and extrinsic tasks. Motivated by the above literature, we compare standard language models with distributionally robust ones and find that, somewhat surprisingly, the standard language models are superior to the distributionally robust ones. We investigate whether this is an effect of over-parameterization or relative distributional stability, and find that the difference persists in the absence of over-parameterization, and that drift is limited, confirming the relative stability of creole languages.

pdf bib
Do pretrained transformers infer telicity like humans?
Yiyun Zhao | Jian Gang Ngui | Lucy Hall Hartley | Steven Bethard

Pretrained transformer-based language models achieve state-of-the-art performance in many NLP tasks, but it is an open question whether the knowledge acquired by the models during pretraining resembles the linguistic knowledge of humans. We present both humans and pretrained transformers with descriptions of events, and measure their preference for telic interpretations (the event has a natural endpoint) or atelic interpretations (the event does not have a natural endpoint). To measure these preferences and determine what factors influence them, we design an English test and a novel-word test that include a variety of linguistic cues (noun phrase quantity, resultative structure, contextual information, temporal units) that bias toward certain interpretations. We find that humans’ choice of telicity interpretation is reliably influenced by theoretically-motivated cues, transformer models (BERT and RoBERTa) are influenced by some (though not all) of the cues, and transformer models often rely more heavily on temporal units than humans do.

pdf bib
The Low-Dimensional Linear Geometry of Contextualized Word Representations
Evan Hernandez | Jacob Andreas

Black-box probing models can reliably extract linguistic features like tense, number, and syntactic role from pretrained word representations. However, the manner in which these features are encoded in representations remains poorly understood. We present a systematic study of the linear geometry of contextualized word representations in ELMO and BERT. We show that a variety of linguistic features (including structured dependency relationships) are encoded in low-dimensional subspaces. We then refine this geometric picture, showing that there are hierarchical relations between the subspaces encoding general linguistic categories and more specific ones, and that low-dimensional feature encodings are distributed rather than aligned to individual neurons. Finally, we demonstrate that these linear subspaces are causally related to model behavior, and can be used to perform fine-grained manipulation of BERT’s output distribution.

pdf bib
Generalising to German Plural Noun Classes, from the Perspective of a Recurrent Neural Network
Verna Dankers | Anna Langedijk | Kate McCurdy | Adina Williams | Dieuwke Hupkes

Inflectional morphology has since long been a useful testing ground for broader questions about generalisation in language and the viability of neural network models as cognitive models of language. Here, in line with that tradition, we explore how recurrent neural networks acquire the complex German plural system and reflect upon how their strategy compares to human generalisation and rule-based models of this system. We perform analyses including behavioural experiments, diagnostic classification, representation analysis and causal interventions, suggesting that the models rely on features that are also key predictors in rule-based models of German plurals. However, the models also display shortcut learning, which is crucial to overcome in search of more cognitively plausible generalisation behaviour.

pdf bib
Can Language Models Encode Perceptual Structure Without Grounding? A Case Study in Color
Mostafa Abdou | Artur Kulmizev | Daniel Hershcovich | Stella Frank | Ellie Pavlick | Anders Søgaard

Pretrained language models have been shown to encode relational information, such as the relations between entities or concepts in knowledge-bases — (Paris, Capital, France). However, simple relations of this type can often be recovered heuristically and the extent to which models implicitly reflect topological structure that is grounded in world, such as perceptual structure, is unknown. To explore this question, we conduct a thorough case study on color. Namely, we employ a dataset of monolexemic color terms and color chips represented in CIELAB, a color space with a perceptually meaningful distance metric. Using two methods of evaluating the structural alignment of colors in this space with text-derived color term representations, we find significant correspondence. Analyzing the differences in alignment across the color spectrum, we find that warmer colors are, on average, better aligned to the perceptual color space than cooler ones, suggesting an intriguing connection to findings from recent work on efficient communication in color naming. Further analysis suggests that differences in alignment are, in part, mediated by collocationality and differences in syntactic usage, posing questions as to the relationship between color perception and usage and context.

pdf bib
Empathetic Dialog Generation with Fine-Grained Intents
Yubo Xie | Pearl Pu

Empathetic dialog generation aims at generating coherent responses following previous dialog turns and, more importantly, showing a sense of caring and a desire to help. Existing models either rely on pre-defined emotion labels to guide the response generation, or use deterministic rules to decide the emotion of the response. With the advent of advanced language models, it is possible to learn subtle interactions directly from the dataset, providing that the emotion categories offer sufficient nuances and other non-emotional but emotional regulating intents are included. In this paper, we describe how to incorporate a taxonomy of 32 emotion categories and 8 additional emotion regulating intents to succeed the task of empathetic response generation. To facilitate the training, we also curated a large-scale emotional dialog dataset from movie subtitles. Through a carefully designed crowdsourcing experiment, we evaluated and demonstrated how our model produces more empathetic dialogs compared with its baselines.

pdf bib
Enriching Language Models with Visually-grounded Word Vectors and the Lancaster Sensorimotor Norms
Casey Kennington

Language models are trained only on text despite the fact that humans learn their first language in a highly interactive and multimodal environment where the first set of learned words are largely concrete, denoting physical entities and embodied states. To enrich language models with some of this missing experience, we leverage two sources of information: (1) the Lancaster Sensorimotor norms, which provide ratings (means and standard deviations) for over 40,000 English words along several dimensions of embodiment, and which capture the extent to which something is experienced across 11 different sensory modalities, and (2) vectors from coefficients of binary classifiers trained on images for the BERT vocabulary. We pre-trained the ELECTRA model and fine-tuned the RoBERTa model with these two sources of information then evaluate using the established GLUE benchmark and the Visual Dialog benchmark. We find that enriching language models with the Lancaster norms and image vectors improves results in both tasks, with some implications for robust language models that capture holistic linguistic meaning in a language learning context.

pdf bib
Learning Zero-Shot Multifaceted Visually Grounded Word Embeddings via Multi-Task Training
Hassan Shahmohammadi | Hendrik P. A. Lensch | R. Harald Baayen

Language grounding aims at linking the symbolic representation of language (e.g., words) into the rich perceptual knowledge of the outside world. The general approach is to embed both textual and visual information into a common space -the grounded space- confined by an explicit relationship. We argue that since concrete and abstract words are processed differently in the brain, such approaches sacrifice the abstract knowledge obtained from textual statistics in the process of acquiring perceptual information. The focus of this paper is to solve this issue by implicitly grounding the word embeddings. Rather than learning two mappings into a joint space, our approach integrates modalities by implicit alignment. This is achieved by learning a reversible mapping between the textual and the grounded space by means of multi-task training. Intrinsic and extrinsic evaluations show that our way of visual grounding is highly beneficial for both abstract and concrete words. Our embeddings are correlated with human judgments and outperform previous works using pretrained word embeddings on a wide range of benchmarks. Our grounded embeddings are publicly available here.

pdf bib
Does language help generalization in vision models?
Benjamin Devillers | Bhavin Choksi | Romain Bielawski | Rufin VanRullen

Vision models trained on multimodal datasets can benefit from the wide availability of large image-caption datasets. A recent model (CLIP) was found to generalize well in zero-shot and transfer learning settings. This could imply that linguistic or “semantic grounding” confers additional generalization abilities to the visual feature space. Here, we systematically evaluate various multimodal architectures and vision-only models in terms of unsupervised clustering, few-shot learning, transfer learning and adversarial robustness. In each setting, multimodal training produced no additional generalization capability compared to standard supervised visual training. We conclude that work is still required for semantic grounding to help improve vision models.

pdf bib
Understanding Guided Image Captioning Performance across Domains
Edwin G. Ng | Bo Pang | Piyush Sharma | Radu Soricut

Image captioning models generally lack the capability to take into account user interest, and usually default to global descriptions that try to balance readability, informativeness, and information overload. We present a Transformer-based model with the ability to produce captions focused on specific objects, concepts or actions in an image by providing them as guiding text to the model. Further, we evaluate the quality of these guided captions when trained on Conceptual Captions which contain 3.3M image-level captions compared to Visual Genome which contain 3.6M object-level captions. Counter-intuitively, we find that guided captions produced by the model trained on Conceptual Captions generalize better on out-of-domain data. Our human-evaluation results indicate that attempting in-the-wild guided image captioning requires access to large, unrestricted-domain training datasets, and that increased style diversity (even without increasing the number of unique tokens) is a key factor for improved performance.

pdf bib
Counterfactual Interventions Reveal the Causal Effect of Relative Clause Representations on Agreement Prediction
Shauli Ravfogel | Grusha Prasad | Tal Linzen | Yoav Goldberg

When language models process syntactically complex sentences, do they use their representations of syntax in a manner that is consistent with the grammar of the language? We propose AlterRep, an intervention-based method to address this question. For any linguistic feature of a given sentence, AlterRep generates counterfactual representations by altering how the feature is encoded, while leaving in- tact all other aspects of the original representation. By measuring the change in a model’s word prediction behavior when these counterfactual representations are substituted for the original ones, we can draw conclusions about the causal effect of the linguistic feature in question on the model’s behavior. We apply this method to study how BERT models of different sizes process relative clauses (RCs). We find that BERT variants use RC boundary information during word prediction in a manner that is consistent with the rules of English grammar; this RC boundary information generalizes to a considerable extent across different RC types, suggesting that BERT represents RCs as an abstract linguistic category.

pdf bib
Who’s on First?: Probing the Learning and Representation Capabilities of Language Models on Deterministic Closed Domains
David Demeter | Doug Downey

The capabilities of today’s natural language processing systems are typically evaluated using large datasets of curated questions and answers. While these are critical benchmarks of progress, they also suffer from weakness due to artificial distributions and incomplete knowledge. Artifacts arising from artificial distributions can overstate language model performance, while incomplete knowledge limits fine-grained analysis. In this work, we introduce a complementary benchmarking approach based on SimPlified Language Activity Traces (SPLAT). SPLATs are corpora of language encodings of activity in some closed domain (we study traces from chess and baseball games in this work). SPLAT datasets use naturally-arising distributions, allow the generation of question-answer pairs at scale, and afford complete knowledge in their closed domains. We show that language models of three different architectures can answer questions about world states using only verb-like encodings of activity. Our approach is extensible to new language models and additional question-answering tasks.

pdf bib
Data Augmentation of Incorporating Real Error Patterns and Linguistic Knowledge for Grammatical Error Correction
Xia Li | Junyi He

Data augmentation aims at expanding training data with clean text using noising schemes to improve the performance of grammatical error correction (GEC). In practice, there are a great number of real error patterns in the manually annotated training data. We argue that these real error patterns can be introduced into clean text to effectively generate more real and high quality synthetic data, which is not fully explored by previous studies. Moreover, we also find that linguistic knowledge can be incorporated into data augmentation for generating more representative and more diverse synthetic data. In this paper, we propose a novel data augmentation method that fully considers the real error patterns and the linguistic knowledge for the GEC task. We conduct extensive experiments on public data sets and the experimental results show that our method outperforms several strong baselines with far less external unlabeled clean text data, highlighting its extraordinary effectiveness in the GEC task that lacks large-scale labeled training data.

pdf bib
Agree to Disagree: Analysis of Inter-Annotator Disagreements in Human Evaluation of Machine Translation Output
Maja Popović

This work describes an analysis of inter-annotator disagreements in human evaluation of machine translation output. The errors in the analysed texts were marked by multiple annotators under guidance of different quality criteria: adequacy, comprehension, and an unspecified generic mixture of adequacy and fluency. Our results show that different criteria result in different disagreements, and indicate that a clear definition of quality criterion can improve the inter-annotator agreement. Furthermore, our results show that for certain linguistic phenomena which are not limited to one or two words (such as word ambiguity or gender) but span over several words or even entire phrases (such as negation or relative clause), disagreements do not necessarily represent “errors” or “noise” but are rather inherent to the evaluation process. %These disagreements are caused by differences in error perception and/or the fact that there is no single correct translation of a text so that multiple solutions are possible. On the other hand, for some other phenomena (such as omission or verb forms) agreement can be easily improved by providing more precise and detailed instructions to the evaluators.

pdf bib
A Multilingual Benchmark for Probing Negation-Awareness with Minimal Pairs
Mareike Hartmann | Miryam de Lhoneux | Daniel Hershcovich | Yova Kementchedjhieva | Lukas Nielsen | Chen Qiu | Anders Søgaard

Negation is one of the most fundamental concepts in human cognition and language, and several natural language inference (NLI) probes have been designed to investigate pretrained language models’ ability to detect and reason with negation. However, the existing probing datasets are limited to English only, and do not enable controlled probing of performance in the absence or presence of negation. In response, we present a multilingual (English, Bulgarian, German, French and Chinese) benchmark collection of NLI examples that are grammatical and correctly labeled, as a result of manual inspection and reformulation. We use the benchmark to probe the negation-awareness of multilingual language models and find that models that correctly predict examples with negation cues, often fail to correctly predict their counter-examples without negation cues, even when the cues are irrelevant for semantic inference.

pdf bib
Explainable Natural Language to Bash Translation using Abstract Syntax Tree
Shikhar Bharadwaj | Shirish Shevade

Natural language processing for program synthesis has been widely researched. In this work, we focus on generating Bash commands from natural language invocations with explanations. We propose a novel transformer based solution by utilizing Bash Abstract Syntax Trees and manual pages. Our method incorporates tree structure information in the transformer architecture and provides explanations for its predictions via alignment matrices between user invocation and manual page text. Our method performs on par with the state of the art performance on Natural Language Context to Command task and performs better than fine-tuned T5 and Seq2Seq models.

pdf bib
Learned Construction Grammars Converge Across Registers Given Increased Exposure
Jonathan Dunn | Harish Tayyar Madabushi

This paper measures the impact of increased exposure on whether learned construction grammars converge onto shared representations when trained on data from different registers. Register influences the frequency of constructions, with some structures common in formal but not informal usage. We expect that a grammar induction algorithm exposed to different registers will acquire different constructions. To what degree does increased exposure lead to the convergence of register-specific grammars? The experiments in this paper simulate language learning in 12 languages (half Germanic and half Romance) with corpora representing three registers (Twitter, Wikipedia, Web). These simulations are repeated with increasing amounts of exposure, from 100k to 2 million words, to measure the impact of exposure on the convergence of grammars. The results show that increased exposure does lead to converging grammars across all languages. In addition, a shared core of register-universal constructions remains constant across increasing amounts of exposure.

pdf bib
Tokenization Repair in the Presence of Spelling Errors
Hannah Bast | Matthias Hertel | Mostafa M. Mohamed

We consider the following tokenization repair problem: Given a natural language text with any combination of missing or spurious spaces, correct these. Spelling errors can be present, but it’s not part of the problem to correct them. For example, given: “Tispa per isabout token izaionrep air”, compute “Tis paper is about tokenizaion repair”. We identify three key ingredients of high-quality tokenization repair, all missing from previous work: deep language models with a bidirectional component, training the models on text with spelling errors, and making use of the space information already present. Our methods also improve existing spell checkers by fixing not only more tokenization errors but also more spelling errors: once it is clear which characters form a word, it is much easier for them to figure out the correct word. We provide six benchmarks that cover three use cases (OCR errors, text extraction from PDF, human errors) and the cases of partially correct space information and all spaces missing. We evaluate our methods against the best existing methods and a non-trivial baseline. We provide full reproducibility under https://ad.informatik.uni-freiburg.de/publications.

pdf bib
A Coarse-to-Fine Labeling Framework for Joint Word Segmentation, POS Tagging, and Constituent Parsing
Yang Hou | Houquan Zhou | Zhenghua Li | Yu Zhang | Min Zhang | Zhefeng Wang | Baoxing Huai | Nicholas Jing Yuan

The most straightforward approach to joint word segmentation (WS), part-of-speech (POS) tagging, and constituent parsing is converting a word-level tree into a char-level tree, which, however, leads to two severe challenges. First, a larger label set (e.g., ≥ 600) and longer inputs both increase computational costs. Second, it is difficult to rule out illegal trees containing conflicting production rules, which is important for reliable model evaluation. If a POS tag (like VV) is above a phrase tag (like VP) in the output tree, it becomes quite complex to decide word boundaries. To deal with both challenges, this work proposes a two-stage coarse-to-fine labeling framework for joint WS-POS-PAR. In the coarse labeling stage, the joint model outputs a bracketed tree, in which each node corresponds to one of four labels (i.e., phrase, subphrase, word, subword). The tree is guaranteed to be legal via constrained CKY decoding. In the fine labeling stage, the model expands each coarse label into a final label (such as VP, VP*, VV, VV*). Experiments on Chinese Penn Treebank 5.1 and 7.0 show that our joint model consistently outperforms the pipeline approach on both settings of w/o and w/ BERT, and achieves new state-of-the-art performance.

pdf bib
Understanding the Extent to which Content Quality Metrics Measure the Information Quality of Summaries
Daniel Deutsch | Dan Roth

Reference-based metrics such as ROUGE or BERTScore evaluate the content quality of a summary by comparing the summary to a reference. Ideally, this comparison should measure the summary’s information quality by calculating how much information the summaries have in common. In this work, we analyze the token alignments used by ROUGE and BERTScore to compare summaries and argue that their scores largely cannot be interpreted as measuring information overlap. Rather, they are better estimates of the extent to which the summaries discuss the same topics. Further, we provide evidence that this result holds true for many other summarization evaluation metrics. The consequence of this result is that the most frequently used summarization evaluation metrics do not align with the community’s research goal, to generate summaries with high-quality information. However, we conclude by demonstrating that a recently proposed metric, QAEval, which scores summaries using question-answering, appears to better capture information quality than current evaluations, highlighting a direction for future research.

pdf bib
Summary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline
Ori Ernst | Ori Shapira | Ramakanth Pasunuru | Michael Lepioshkin | Jacob Goldberger | Mohit Bansal | Ido Dagan

Aligning sentences in a reference summary with their counterparts in source documents was shown as a useful auxiliary summarization task, notably for generating training data for salience detection. Despite its assessed utility, the alignment step was mostly approached with heuristic unsupervised methods, typically ROUGE-based, and was never independently optimized or evaluated. In this paper, we propose establishing summary-source alignment as an explicit task, while introducing two major novelties: (1) applying it at the more accurate proposition span level, and (2) approaching it as a supervised classification task. To that end, we created a novel training dataset for proposition-level alignment, derived automatically from available summarization evaluation data. In addition, we crowdsourced dev and test datasets, enabling model development and proper evaluation. Utilizing these data, we present a supervised proposition alignment baseline model, showing improved alignment-quality over the unsupervised approach.

pdf bib
Exploring Metaphoric Paraphrase Generation
Kevin Stowe | Nils Beck | Iryna Gurevych

Metaphor generation is a difficult task, and has seen tremendous improvement with the advent of deep pretrained models. We focus here on the specific task of metaphoric paraphrase generation, in which we provide a literal sentence and generate a metaphoric sentence which paraphrases that input. We compare naive, “free” generation models with those that exploit forms of control over the generation process, adding additional information based on conceptual metaphor theory. We evaluate two methods for generating paired training data, which is then used to train T5 models for free and controlled generation. We use crowdsourcing to evaluate the results, showing that free models tend to generate more fluent paraphrases, while controlled models are better at generating novel metaphors. We then analyze evaluation metrics, showing that different metrics are necessary to capture different aspects of metaphoric paraphrasing. We release our data and models, as well as our annotated results in order to facilitate development of better evaluation metrics.

pdf bib
Imposing Relation Structure in Language-Model Embeddings Using Contrastive Learning
Christos Theodoropoulos | James Henderson | Andrei Catalin Coman | Marie-Francine Moens

Though language model text embeddings have revolutionized NLP research, their ability to capture high-level semantic information, such as relations between entities in text, is limited. In this paper, we propose a novel contrastive learning framework that trains sentence embeddings to encode the relations in a graph structure. Given a sentence (unstructured text) and its graph, we use contrastive learning to impose relation-related structure on the token level representations of the sentence obtained with a CharacterBERT (El Boukkouri et al., 2020) model. The resulting relation-aware sentence embeddings achieve state-of-the-art results on the relation extraction task using only a simple KNN classifier, thereby demonstrating the success of the proposed method. Additional visualization by a tSNE analysis shows the effectiveness of the learned representation space compared to baselines. Furthermore, we show that we can learn a different space for named entity recognition, again using a contrastive learning objective, and demonstrate how to successfully combine both representation spaces in an entity-relation task.

pdf bib
NOPE: A Corpus of Naturally-Occurring Presuppositions in English
Alicia Parrish | Sebastian Schuster | Alex Warstadt | Omar Agha | Soo-Hwan Lee | Zhuoye Zhao | Samuel R. Bowman | Tal Linzen

Understanding language requires grasping not only the overtly stated content, but also making inferences about things that were left unsaid. These inferences include presuppositions, a phenomenon by which a listener learns about new information through reasoning about what a speaker takes as given. Presuppositions require complex understanding of the lexical and syntactic properties that trigger them as well as the broader conversational context. In this work, we introduce the Naturally-Occurring Presuppositions in English (NOPE) Corpus to investigate the context-sensitivity of 10 different types of presupposition triggers and to evaluate machine learning models’ ability to predict human inferences. We find that most of the triggers we investigate exhibit moderate variability. We further find that transformer-based models draw correct inferences in simple cases involving presuppositions, but they fail to capture the minority of exceptional cases in which human judgments reveal complex interactions between context and triggers.

pdf bib
Pragmatic competence of pre-trained language models through the lens of discourse connectives
Lalchand Pandia | Yan Cong | Allyson Ettinger

As pre-trained language models (LMs) continue to dominate NLP, it is increasingly important that we understand the depth of language capabilities in these models. In this paper, we target pre-trained LMs’ competence in pragmatics, with a focus on pragmatics relating to discourse connectives. We formulate cloze-style tests using a combination of naturally-occurring data and controlled inputs drawn from psycholinguistics. We focus on testing models’ ability to use pragmatic cues to predict discourse connectives, models’ ability to understand implicatures relating to connectives, and the extent to which models show humanlike preferences regarding temporal dynamics of connectives. We find that although models predict connectives reasonably well in the context of naturally-occurring data, when we control contexts to isolate high-level pragmatic cues, model sensitivity is much lower. Models also do not show substantial humanlike temporal preferences. Overall, the findings suggest that at present, dominant pre-training paradigms do not result in substantial pragmatic competence in our models.

pdf bib
Predicting Text Readability from Scrolling Interactions
Sian Gooding | Yevgeni Berzak | Tony Mak | Matt Sharifi

Judging the readability of text has many important applications, for instance when performing text simplification or when sourcing reading material for language learners. In this paper, we present a 518 participant study which investigates how scrolling behaviour relates to the readability of English texts. We make our dataset publicly available and show that (1) there are statistically significant differences in the way readers interact with text depending on the text level, (2) such measures can be used to predict the readability of text, and (3) the background of a reader impacts their reading interactions and the factors contributing to text difficulty.

pdf bib
Modeling the Interaction Between Perception-Based and Production-Based Learning in Children’s Early Acquisition of Semantic Knowledge
Mitja Nikolaus | Abdellah Fourtassi

Children learn the meaning of words and sentences in their native language at an impressive speed and from highly ambiguous input. To account for this learning, previous computational modeling has focused mainly on the study of perception-based mechanisms like cross-situational learning. However, children do not learn only by exposure to the input. As soon as they start to talk, they practice their knowledge in social interactions and they receive feedback from their caregivers. In this work, we propose a model integrating both perception- and production-based learning using artificial neural networks which we train on a large corpus of crowd-sourced images with corresponding descriptions. We found that production-based learning improves performance above and beyond perception-based learning across a wide range of semantic tasks including both word- and sentence-level semantics. In addition, we documented a synergy between these two mechanisms, where their alternation allows the model to converge on more balanced semantic knowledge. The broader impact of this work is to highlight the importance of modeling language learning in the context of social interactions where children are not only understood as passively absorbing the input, but also as actively participating in the construction of their linguistic knowledge.

pdf bib
Scaffolded input promotes atomic organization in the recurrent neural network language model
Philip A. Huebner | Jon A. Willits

The recurrent neural network (RNN) language model is a powerful tool for learning arbitrary sequential dependencies in language data. Despite its enormous success in representing lexical sequences, little is known about the quality of the lexical representations that it acquires. In this work, we conjecture that it is straightforward to extract lexical representations (i.e. static word embeddings) from an RNN, but that the amount of semantic information that is encoded is limited when lexical items in the training data provide redundant semantic information. We conceptualize this limitation of the RNN as a failure to learn atomic internal states - states which capture information relevant to single word types without being influenced by redundant information provided by words with which they co-occur. Using a corpus of artificial language, we verify that redundancy in the training data yields non-atomic internal states, and propose a novel method for inducing atomic internal states. We show that 1) our method successfully induces atomic internal organization in controlled experiments, and 2) under more realistic conditions in which the training consists of child-directed language, application of our method improves the performance of lexical representations on a downstream semantic categorization task.

pdf bib
Grammatical Profiling for Semantic Change Detection
Andrey Kutuzov | Lidia Pivovarova | Mario Giulianelli

Semantics, morphology and syntax are strongly interdependent. However, the majority of computational methods for semantic change detection use distributional word representations which encode mostly semantics. We investigate an alternative method, grammatical profiling, based entirely on changes in the morphosyntactic behaviour of words. We demonstrate that it can be used for semantic change detection and even outperforms some distributional semantic methods. We present an in-depth qualitative and quantitative analysis of the predictions made by our grammatical profiling system, showing that they are plausible and interpretable.

pdf bib
Deconstructing syntactic generalizations with minimalist grammars
Marina Ermolaeva

Within the currently dominant Minimalist framework for syntax (Chomsky, 1995, 2000), it is not uncommon to encounter multiple proposals for the same natural language pattern in the literature. We investigate the possibility of evaluating and comparing analyses of syntax phenomena, implemented as minimalist grammars (Stabler, 1997), from a quantitative point of view. This paper introduces a principled way of making linguistic generalizations by detecting and eliminating syntactic and phonological redundancies in the data. As proof of concept, we first provide a small step-by-step example transforming a naive grammar over unsegmented words into a linguistically motivated grammar over morphemes, and then discuss a description of the English auxiliary system, passives, and raising verbs produced by a prototype implementation of a procedure for automated grammar optimization.

pdf bib
Relation-aware Bidirectional Path Reasoning for Commonsense Question Answering
Junxing Wang | Xinyi Li | Zhen Tan | Xiang Zhao | Weidong Xiao

Commonsense Question Answering is an important natural language processing (NLP) task that aims to predict the correct answer to a question through commonsense reasoning. Previous studies utilize pre-trained models on large-scale corpora such as BERT, or perform reasoning on knowledge graphs. However, these methods do not explicitly model the relations that connect entities, which are informational and can be used to enhance reasoning. To address this issue, we propose a relation-aware reasoning method. Our method uses a relation-aware graph neural network to capture the rich contextual information from both entities and relations. Compared with methods that use fixed relation embeddings from pre-trained models, our model dynamically updates relations with contextual information from a multi-source subgraph, built from multiple external knowledge sources. The enhanced representations of relations are then fed to a bidirectional reasoning module. A bidirectional attention mechanism is applied between the question sequence and the paths that connect entities, which provides us with transparent interpretability. Experimental results on the CommonsenseQA dataset illustrate that our method results in significant improvements over the baselines while also providing clear reasoning paths.

pdf bib
Does referent predictability affect the choice of referential form? A computational approach using masked coreference resolution
Laura Aina | Xixian Liao | Gemma Boleda | Matthijs Westera

It is often posited that more predictable parts of a speaker’s meaning tend to be made less explicit, for instance using shorter, less informative words. Studying these dynamics in the domain of referring expressions has proven difficult, with existing studies, both psycholinguistic and corpus-based, providing contradictory results. We test the hypothesis that speakers produce less informative referring expressions (e.g., pronouns vs. full noun phrases) when the context is more informative about the referent, using novel computational estimates of referent predictability. We obtain these estimates training an existing coreference resolution system for English on a new task, masked coreference resolution, giving us a probability distribution over referents that is conditioned on the context but not the referring expression. The resulting system retains standard coreference resolution performance while yielding a better estimate of human-derived referent predictability than previous attempts. A statistical analysis of the relationship between model output and mention form supports the hypothesis that predictability affects the form of a mention, both its morphosyntactic type and its length.

pdf bib
Polar Embedding
Ran Iwamoto | Ryosuke Kohita | Akifumi Wachi

Hierarchical relationships are invaluable information for many natural language processing (NLP) tasks. Distributional representation has become a fundamental approach for encoding word relationships, particularly embeddings in hyperbolic space showed great performance in representing hierarchies by taking advantage of their spatial properties. However, most machine learning systems do not suppose to use in such complex non-Euclidean geometries. To achieve hierarchy representations in commonly used Euclidean space, we propose Polar Embedding that learns word embeddings with the polar coordinate system. Utilizing characteristics of polar coordinates, the hierarchy of words is expressed with two independent variables: radius (generality) and angles (similarity), and their variables are optimized separately. Polar embedding shows word hierarchies explicitly and allows us to use beneficial resources such as word frequencies or word generality annotations for computing radiuses. We introduce an optimization method for learning angles in limited ranges of polar coordinates, which combining a loss function controlling gradient and distribution uniformization. Experimental results on hypernymy datasets indicate that our approach outperforms other embeddings in low-dimensional Euclidean space and competitively performs even with hyperbolic embeddings, which possess a geometric advantage.

pdf bib
Commonsense Knowledge in Word Associations and ConceptNet
Chunhua Liu | Trevor Cohn | Lea Frermann

Humans use countless basic, shared facts about the world to efficiently navigate in their environment. This commonsense knowledge is rarely communicated explicitly, however, understanding how commonsense knowledge is represented in different paradigms is important for (a) a deeper understanding of human cognition and (b) augmenting automatic reasoning systems. This paper presents an in-depth comparison of two large-scale resources of general knowledge: ConceptNet, an engineered relational database, and SWOW, a knowledge graph derived from crowd-sourced word associations. We examine the structure, overlap and differences between the two graphs, as well as the extent of situational commonsense knowledge present in the two resources. We finally show empirically that both resources improve downstream task performance on commonsense reasoning benchmarks over text-only baselines, suggesting that large-scale word association data, which have been obtained for several languages through crowd-sourcing, can be a valuable complement to curated knowledge graphs.

pdf bib
Cross-document Event Identity via Dense Annotation
Adithya Pratapa | Zhengzhong Liu | Kimihiro Hasegawa | Linwei Li | Yukari Yamakawa | Shikun Zhang | Teruko Mitamura

In this paper, we study the identity of textual events from different documents. While the complex nature of event identity is previously studied (Hovy et al., 2013), the case of events across documents is unclear. Prior work on cross-document event coreference has two main drawbacks. First, they restrict the annotations to a limited set of event types. Second, they insufficiently tackle the concept of event identity. Such annotation setup reduces the pool of event mentions and prevents one from considering the possibility of quasi-identity relations. We propose a dense annotation approach for cross-document event coreference, comprising a rich source of event mentions and a dense annotation effort between related document pairs. To this end, we design a new annotation workflow with careful quality control and an easy-to-use annotation interface. In addition to the links, we further collect overlapping event contexts, including time, location, and participants, to shed some light on the relation between identity decisions and context. We present an open-access dataset for cross-document event coreference, CDEC-WN, collected from English Wikinews and open-source our annotation toolkit to encourage further research on cross-document tasks.

pdf bib
Tackling Zero Pronoun Resolution and Non-Zero Coreference Resolution Jointly
Shisong Chen | Binbin Gu | Jianfeng Qu | Zhixu Li | An Liu | Lei Zhao | Zhigang Chen

Zero pronoun resolution aims at recognizing dropped pronouns and pointing out their anaphoric mentions, while non-zero coreference resolution targets at clustering mentions referring to the same entity. Existing efforts often deal with the two problems separately regardless of their close essential correlations. In this paper, we investigate the possibility of jointly solving zero pronoun resolution and coreference resolution via a novel end-to-end neural model. Specifically, we design a gap-masked self-attention model that encodes gaps and tokens in the same space, where gaps could capture valuable contextual information according to their surrounding tokens while tokens could maintain original sequential information without disturbance. Additionally, we also propose a two-stage interaction mechanism to make full use of the exclusive relationship between zero pronouns and mentions. Our empirical study conducted on the OntoNotes 5.0 Chinese dataset shows that our model could outperform corresponding state-of-the-art approaches on both tasks.

pdf bib
Negation-Instance Based Evaluation of End-to-End Negation Resolution
Elizaveta Sineva | Stefan Grünewald | Annemarie Friedrich | Jonas Kuhn

In this paper, we revisit the task of negation resolution, which includes the subtasks of cue detection (e.g. “not”, “never”) and scope resolution. In the context of previous shared tasks, a variety of evaluation metrics have been proposed. Subsequent works usually use different subsets of these, including variations and custom implementations, rendering meaningful comparisons between systems difficult. Examining the problem both from a linguistic perspective and from a downstream viewpoint, we here argue for a negation-instance based approach to evaluating negation resolution. Our proposed metrics correspond to expectations over per-instance scores and hence are intuitively interpretable. To render research comparable and to foster future work, we provide results for a set of current state-of-the-art systems for negation resolution on three English corpora, and make our implementation of the evaluation scripts publicly available.

pdf bib
Controlling Prosody in End-to-End TTS: A Case Study on Contrastive Focus Generation
Siddique Latif | Inyoung Kim | Ioan Calapodescu | Laurent Besacier

While End-2-End Text-to-Speech (TTS) has made significant progresses over the past few years, these systems still lack intuitive user controls over prosody. For instance, generating speech with fine-grained prosody control (prosodic prominence, contextually appropriate emotions) is still an open challenge. In this paper, we investigate whether we can control prosody directly from the input text, in order to code information related to contrastive focus which emphasizes a specific word that is contrary to the presuppositions of the interlocutor. We build and share a specific dataset for this purpose and show that it allows to train a TTS system were this fine-grained prosodic feature can be correctly conveyed using control tokens. Our evaluation compares synthetic and natural utterances and shows that prosodic patterns of contrastive focus (variations of Fo, Intensity and Duration) can be learnt accurately. Such a milestone is important to allow, for example, smart speakers to be programmatically controlled in terms of output prosody.

pdf bib
A Large-scale Comprehensive Abusiveness Detection Dataset with Multifaceted Labels from Reddit
Hoyun Song | Soo Hyun Ryu | Huije Lee | Jong Park

As users in online communities suffer from severe side effects of abusive language, many researchers attempted to detect abusive texts from social media, presenting several datasets for such detection. However, none of them contain both comprehensive labels and contextual information, which are essential for thoroughly detecting all kinds of abusiveness from texts, since datasets with such fine-grained features demand a significant amount of annotations, leading to much increased complexity. In this paper, we propose a Comprehensive Abusiveness Detection Dataset (CADD), collected from the English Reddit posts, with multifaceted labels and contexts. Our dataset is annotated hierarchically for an efficient annotation through crowdsourcing on a large-scale. We also empirically explore the characteristics of our dataset and provide a detailed analysis for novel insights. The results of our experiments with strong pre-trained natural language understanding models on our dataset show that our dataset gives rise to meaningful performance, assuring its practicality for abusive language detection.

pdf bib
MirrorWiC: On Eliciting Word-in-Context Representations from Pretrained Language Models
Qianchu Liu | Fangyu Liu | Nigel Collier | Anna Korhonen | Ivan Vulić

Recent work indicated that pretrained language models (PLMs) such as BERT and RoBERTa can be transformed into effective sentence and word encoders even via simple self-supervised techniques. Inspired by this line of work, in this paper we propose a fully unsupervised approach to improving word-in-context (WiC) representations in PLMs, achieved via a simple and efficient WiC-targeted fine-tuning procedure: MirrorWiC. The proposed method leverages only raw texts sampled from Wikipedia, assuming no sense-annotated data, and learns context-aware word representations within a standard contrastive learning setup. We experiment with a series of standard and comprehensive WiC benchmarks across multiple languages. Our proposed fully unsupervised MirrorWiC models obtain substantial gains over off-the-shelf PLMs across all monolingual, multilingual and cross-lingual setups. Moreover, on some standard WiC benchmarks, MirrorWiC is even on-par with supervised models fine-tuned with in-task data and sense labels.

pdf bib
A Data Bootstrapping Recipe for Low-Resource Multilingual Relation Classification
Arijit Nag | Bidisha Samanta | Animesh Mukherjee | Niloy Ganguly | Soumen Chakrabarti

Relation classification (sometimes called ‘extraction’) requires trustworthy datasets for fine-tuning large language models, as well as for evaluation. Data collection is challenging for Indian languages, because they are syntactically and morphologically diverse, as well as different from resource-rich languages like English. Despite recent interest in deep generative models for Indian languages, relation classification is still not well-served by public data sets. In response, we present IndoRE, a dataset with 39K entity- and relation-tagged gold sentences in three Indian languages, plus English. We start with a multilingual BERT (mBERT) based system that captures entity span positions and type information and provides competitive monolingual relation classification. Using this system, we explore and compare transfer mechanisms between languages. In particular, we study the accuracy-efficiency tradeoff between expensive gold instances vs. translated and aligned ‘silver’ instances.

pdf bib
FAST: A carefully sampled and cognitively motivated dataset for distributional semantic evaluation
Stefan Evert | Gabriella Lapesa

What is the first word that comes to your mind when you hear giraffe, or damsel, or freedom? Such free associations contain a huge amount of information on the mental representations of the corresponding concepts, and are thus an extremely valuable testbed for the evaluation of semantic representations extracted from corpora. In this paper, we present FAST (Free ASsociation Tasks), a free association dataset for English rigorously sampled from two standard free association norms collections (the Edinburgh Associative Thesaurus and the University of South Florida Free Association Norms), discuss two evaluation tasks, and provide baseline results. In parallel, we discuss methodological considerations concerning the desiderata for a proper evaluation of semantic representations.

pdf bib
Automatic Error Type Annotation for Arabic
Riadh Belkebir | Nizar Habash

We present ARETA, an automatic error type annotation system for Modern Standard Arabic. We design ARETA to address Arabic’s morphological richness and orthographic ambiguity. We base our error taxonomy on the Arabic Learner Corpus (ALC) Error Tagset with some modifications. ARETA achieves a performance of 85.8% (micro average F1 score) on a manually annotated blind test portion of ALC. We also demonstrate ARETA’s usability by applying it to a number of submissions from the QALB 2014 shared task for Arabic grammatical error correction. The resulting analyses give helpful insights on the strengths and weaknesses of different submissions, which is more useful than the opaque M2 scoring metrics used in the shared task. ARETA employs a large Arabic morphological analyzer, but is completely unsupervised otherwise. We make ARETA publicly available.

pdf bib
The Emergence of the Shape Bias Results from Communicative Efficiency
Eva Portelance | Michael C. Frank | Dan Jurafsky | Alessandro Sordoni | Romain Laroche

By the age of two, children tend to assume that new word categories are based on objects’ shape, rather than their color or texture; this assumption is called the shape bias. They are thought to learn this bias by observing that their caregiver’s language is biased towards shape based categories. This presents a chicken and egg problem: if the shape bias must be present in the language in order for children to learn it, how did it arise in language in the first place? In this paper, we propose that communicative efficiency explains both how the shape bias emerged and why it persists across generations. We model this process with neural emergent language agents that learn to communicate about raw pixelated images. First, we show that the shape bias emerges as a result of efficient communication strategies employed by agents. Second, we show that pressure brought on by communicative need is also necessary for it to persist across generations; simply having a shape bias in an agent’s input language is insufficient. These results suggest that, over and above the operation of other learning strategies, the shape bias in human learners may emerge and be sustained by communicative pressures.

pdf bib
BabyBERTa: Learning More Grammar With Small-Scale Child-Directed Language
Philip A. Huebner | Elior Sulem | Fisher Cynthia | Dan Roth

Transformer-based language models have taken the NLP world by storm. However, their potential for addressing important questions in language acquisition research has been largely ignored. In this work, we examined the grammatical knowledge of RoBERTa (Liu et al., 2019) when trained on a 5M word corpus of language acquisition data to simulate the input available to children between the ages 1 and 6. Using the behavioral probing paradigm, we found that a smaller version of RoBERTa-base that never predicts unmasked tokens, which we term BabyBERTa, acquires grammatical knowledge comparable to that of pre-trained RoBERTa-base - and does so with approximately 15X fewer parameters and 6,000X fewer words. We discuss implications for building more efficient models and the learnability of grammar from input available to children. Lastly, to support research on this front, we release our novel grammar test suite that is compatible with the small vocabulary of child-directed input.

pdf bib
Analysing Human Strategies of Information Transmission as a Function of Discourse Context
Mario Giulianelli | Raquel Fernández

Speakers are thought to use rational information transmission strategies for efficient communication (Genzel and Charniak, 2002; Aylett and Turk, 2004; Jaeger and Levy, 2007). Previous work analysing these strategies in sentence production has failed to take into account how the information content of sentences varies as a function of the available discourse context. In this study, we estimate sentence information content within discourse context. We find that speakers transmit information at a stable rate—i.e., rationally—in English newspaper articles but that this rate decreases in spoken open domain and written task-oriented dialogues. We also observe that speakers’ choices are not oriented towards local uniformity of information, which is another hypothesised rational strategy. We suggest that a more faithful model of communication should explicitly include production costs and goal-oriented rewards.

pdf bib
Predicting non-native speech perception using the Perceptual Assimilation Model and state-of-the-art acoustic models
Juliette Millet | Ioana Chitoran | Ewan Dunbar

Our native language influences the way we perceive speech sounds, affecting our ability to discriminate non-native sounds. We compare two ideas about the influence of the native language on speech perception: the Perceptual Assimilation Model, which appeals to a mental classification of sounds into native phoneme categories, versus the idea that rich, fine-grained phonetic representations tuned to the statistics of the native language, are sufficient. We operationalise this idea using representations from two state-of-the-art speech models, a Dirichlet process Gaussian mixture model and the more recent wav2vec 2.0 model. We present a new, open dataset of French- and English-speaking participants’ speech perception behaviour for 61 vowel sounds from six languages. We show that phoneme assimilation is a better predictor than fine-grained phonetic modelling, both for the discrimination behaviour as a whole, and for predicting differences in discriminability associated with differences in native language background. We also show that wav2vec 2.0, while not good at capturing the effects of native language on speech perception, is complementary to information about native phoneme assimilation, and provides a good model of low-level phonetic representations, supporting the idea that both categorical and fine-grained perception are used during speech perception.

pdf bib
The Influence of Regional Pronunciation Variation on Children’s Spelling and the Potential Benefits of Accent Adapted Spellcheckers
Emma O’Neill | Joe Kenny | Anthony Ventresque | Julie Carson-Berndsen

A child who is unfamiliar with the correct spelling of a word often employs a “sound it out” approach: breaking the word down into its constituent sounds and then choosing letters to represent the identified sounds. This often results in a misspelling that is orthographically very different to the intended target. Recently, efforts have been made to develop phonetic based spellcheckers to tackle the more deviant nature of children’s misspellings. However, little work has been done to investigate the potential of spelling correction tools that incorporate regional pronunciation variation. If a child must first identify the sounds that make up a word, it stands to reason their pronunciation would influence this process. We investigate this hypothesis along with the feasibility and potential benefits of adapting spelling correction tools to more specific language variants - particularly Irish Accented English. We use misspelling data from schoolchildren across Ireland to adapt an existing English phonetic-based spellchecker and demonstrate improvements in performance. These results not only prompt consideration of language varieties in the development of spellcheckers but also contribute to existing literature on the role of regional accent in the acquisition of writing proficiency.


bib (full) Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference

pdf bib
Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference
Maciej Ogrodniczuk | Sameer Pradhan | Massimo Poesio | Yulia Grishina | Vincent Ng

pdf bib
A Brief Survey and Comparative Study of Recent Development of Pronoun Coreference Resolution in English
Hongming Zhang | Xinran Zhao | Yangqiu Song

Pronoun Coreference Resolution (PCR) is the task of resolving pronominal expressions to all mentions they refer to. Compared with the general coreference resolution task, the main challenge of PCR is the coreference relation prediction rather than the mention detection. As one important natural language understanding (NLU) component, pronoun resolution is crucial for many downstream tasks and still challenging for existing models, which motivates us to survey existing approaches and think about how to do better. In this survey, we first introduce representative datasets and models for the ordinary pronoun coreference resolution task. Then we focus on recent progress on hard pronoun coreference resolution problems (e.g., Winograd Schema Challenge) to analyze how well current models can understand commonsense. We conduct extensive experiments to show that even though current models are achieving good performance on the standard evaluation set, they are still not ready to be used in real applications (e.g., all SOTA models struggle on correctly resolving pronouns to infrequent objects). All experiment codes will be available upon acceptance.

pdf bib
Coreference Resolution for the Biomedical Domain: A Survey
Pengcheng Lu | Massimo Poesio

Issues with coreference resolution are one of the most frequently mentioned challenges for information extraction from the biomedical literature. Thus, the biomedical genre has long been the second most researched genre for coreference resolution after the news domain, and the subject of a great deal of research for NLP in general. In recent years this interest has grown enormously leading to the development of a number of substantial datasets, of domain-specific contextual language models, and of several architectures. In this paper we review the state of-the-art of coreference in the biomedical domain with a particular attention on these most recent developments.

pdf bib
FantasyCoref: Coreference Resolution on Fantasy Literature Through Omniscient Writer’s Point of View
Sooyoun Han | Sumin Seo | Minji Kang | Jongin Kim | Nayoung Choi | Min Song | Jinho D. Choi

This paper presents a new corpus and annotation guideline for a novel coreference resolution task on fictional texts, and analyzes its unique characteristics. FantasyCoref contains 211 stories of Grimms’ Fairy Tales and 3 other fantasy literature annotated in the omniscient writer’s point of view (OWV) to handle distinctive aspects in this genre. This task is more challenging than general coreference resolution in two ways. First, documents in our corpus are 2.5 times longer than the ones in OntoNotes, raising a new layer of difficulty in resolving long-distant referents. Second, annotation of literary styles and concepts raise several issues which are not sufficiently addressed in the existing annotation guidelines. Hence, considerations on such issues and the concept of OWV are necessary to achieve high inter-annotator agreement (IAA) in coreference resolution of fictional texts. We carefully conduct annotation tasks in four stages to ensure the quality of our annotation. As a result, a high IAA score of 87% is achieved using the standard coreference evaluation metric. Finally, state-of-the-art coreference resolution approaches are evaluated on our corpus. After training with our annotated dataset, there was a 2.59% and 3.06% improvement over the model trained on the OntoNotes dataset. Also, we observe that the portion of errors specific to fictional texts declines after the training.

pdf bib
DramaCoref: A Hybrid Coreference Resolution System for German Theater Plays
Janis Pagel | Nils Reiter

We present a system for resolving coreference on theater plays, DramaCoref. The system uses neural network techniques to provide a list of potential mentions. These mentions are assigned to common entities using generic and domain-specific rules. We find that DramaCoref works well on the theater plays when compared to corpora from other domains and profits from the inclusion of information specific to theater plays. On the best-performing setup, it achieves a CoNLL score of 32% when using automatically detected mentions and 55% when using gold mentions. Single rules achieve high precision scores; however, rules designed on other domains are often not applicable or yield unsatisfactory results. Error analysis shows that the mention detection is the main weakness of the system, providing directions for future improvements.

pdf bib
A Hybrid Rule-Based and Neural Coreference Resolution System with an Evaluation on Dutch Literature
Andreas van Cranenburgh | Esther Ploeger | Frank van den Berg | Remi Thüss

We introduce a modular, hybrid coreference resolution system that extends a rule-based baseline with three neural classifiers for the subtasks mention detection, mention attributes (gender, animacy, number), and pronoun resolution. The classifiers substantially increase coreference performance in our experiments with Dutch literature across all metrics on the development set: mention detection, LEA, CoNLL, and especially pronoun accuracy. However, on the test set, the best results are obtained with rule-based pronoun resolution. This inconsistent result highlights that the rule-based system is still a strong baseline, and more work is needed to improve pronoun resolution robustly for this dataset. While end-to-end neural systems require no feature engineering and achieve excellent performance in standard benchmarks with large training sets, our simple hybrid system scales well to long document coreference (>10k words) and attains superior results in our experiments on literature.

pdf bib
Lazy Low-Resource Coreference Resolution: a Study on Leveraging Black-Box Translation Tools
Semere Kiros Bitew | Johannes Deleu | Chris Develder | Thomas Demeester

Large annotated corpora for coreference resolution are available for few languages. For machine translation, however, strong black-box systems exist for many languages. We empirically explore the appealing idea of leveraging such translation tools for bootstrapping coreference resolution in languages with limited resources. Two scenarios are analyzed, in which a large coreference corpus in a high-resource language is used for coreference predictions in a smaller language, i.e., by machine translating either the training corpus or the test data. In our empirical evaluation of coreference resolution using the two scenarios on several medium-resource languages, we find no improvement over monolingual baseline models. Our analysis of the various sources of error inherent to the studied scenarios, reveals that in fact the quality of contemporary machine translation tools is the main limiting factor.

pdf bib
Resources and Evaluations for Danish Entity Resolution
Maria Barrett | Hieu Lam | Martin Wu | Ophélie Lacroix | Barbara Plank | Anders Søgaard

Automatic coreference resolution is understudied in Danish even though most of the Danish Dependency Treebank (Buch-Kromann, 2003) is annotated with coreference relations. This paper describes a conversion of its partial, yet well-documented, coreference relations into coreference clusters and the training and evaluation of coreference models on this data. To the best of our knowledge, these are the first publicly available, neural coreference models for Danish. We also present a new entity linking annotation on the dataset using WikiData identifiers, a named entity disambiguation (NED) dataset, and a larger automatically created NED dataset enabling wikily supervised NED models. The entity linking annotation is benchmarked using a state-of-the-art neural entity disambiguation model.

pdf bib
CoreLM: Coreference-aware Language Model Fine-Tuning
Nikolaos Stylianou | Ioannis Vlahavas

Language Models are the underpin of all modern Natural Language Processing (NLP) tasks. The introduction of the Transformers architecture has contributed significantly into making Language Modeling very effective across many NLP task, leading to significant advancements in the field. However, Transformers come with a big computational cost, which grows quadratically with respect to the input length. This presents a challenge as to understand long texts requires a lot of context. In this paper, we propose a Fine-Tuning framework, named CoreLM, that extends the architecture of current Pretrained Language Models so that they incorporate explicit entity information. By introducing entity representations, we make available information outside the contextual space of the model, which results in a better Language Model for a fraction of the computational cost. We implement our approach using GPT2 and compare the fine-tuned model to the original. Our proposed model achieves a lower Perplexity in GUMBY and LAMBDADA datasets when compared to GPT2 and a fine-tuned version of GPT2 without any changes. We also compare the models’ performance in terms of Accuracy in LAMBADA and Children’s Book Test, with and without the use of model-created coreference annotations.

pdf bib
Data Augmentation Methods for Anaphoric Zero Pronouns
Abdulrahman Aloraini | Massimo Poesio

In pro-drop language like Arabic, Chinese, Italian, Japanese, Spanish, and many others, unrealized (null) arguments in certain syntactic positions can refer to a previously introduced entity, and are thus called anaphoric zero pronouns. The existing resources for studying anaphoric zero pronoun interpretation are however still limited. In this paper, we use five data augmentation methods to generate and detect anaphoric zero pronouns automatically. We use the augmented data as additional training materials for two anaphoric zero pronoun systems for Arabic. Our experimental results show that data augmentation improves the performance of the two systems, surpassing the state-of-the-art results.

pdf bib
Exploring Pre-Trained Transformers and Bilingual Transfer Learning for Arabic Coreference Resolution
Bonan Min

In this paper, we develop bilingual transfer learning approaches to improve Arabic coreference resolution by leveraging additional English annotation via bilingual or multilingual pre-trained transformers. We show that bilingual transfer learning improves the strong transformer-based neural coreference models by 2-4 F1. We also systemically investigate the effectiveness of several pre-trained transformer models that differ in training corpora, languages covered, and model capacity. Our best model achieves a new state-of-the-art performance of 64.55 F1 on the Arabic OntoNotes dataset. Our code is publicly available at https://github.com/bnmin/arabic_coref.

pdf bib
Event and Entity Coreference using Trees to Encode Uncertainty in Joint Decisions
Nishant Yadav | Nicholas Monath | Rico Angell | Andrew McCallum

Coreference decisions among event mentions and among co-occurring entity mentions are highly interdependent, thus motivating joint inference. Capturing the uncertainty over each variable can be crucial for inference among multiple dependent variables. Previous work on joint coreference employs heuristic approaches, lacking well-defined objectives, and lacking modeling of uncertainty on each side of the joint problem. We present a new approach of joint coreference, including (1) a formal cost function inspired by Dasgupta’s cost for hierarchical clustering, and (2) a representation for uncertainty of clustering of event and entity mentions, again based on a hierarchical structure. We describe an alternating optimization method for inference that when clustering event mentions, considers the uncertainty of the clustering of entity mentions and vice-versa. We show that our proposed joint model provides empirical advantages over state-of-the-art independent and joint models.

pdf bib
On Generalization in Coreference Resolution
Shubham Toshniwal | Patrick Xia | Sam Wiseman | Karen Livescu | Kevin Gimpel

While coreference resolution is defined independently of dataset domain, most models for performing coreference resolution do not transfer well to unseen domains. We consolidate a set of 8 coreference resolution datasets targeting different domains to evaluate the off-the-shelf performance of models. We then mix three datasets for training; even though their domain, annotation guidelines, and metadata differ, we propose a method for jointly training a single model on this heterogeneous data mixture by using data augmentation to account for annotation differences and sampling to balance the data quantities. We find that in a zero-shot setting, models trained on a single dataset transfer poorly while joint training yields improved overall performance, leading to better generalization in coreference resolution models. This work contributes a new benchmark for robust coreference resolution and multiple new state-of-the-art results.

pdf bib
Improving Span Representation for Domain-adapted Coreference Resolution
Nupoor Gandhi | Anjalie Field | Yulia Tsvetkov

Recent work has shown fine-tuning neural coreference models can produce strong performance when adapting to different domains. However, at the same time, this can require a large amount of annotated target examples. In this work, we focus on supervised domain adaptation for clinical notes, proposing the use of concept knowledge to more efficiently adapt coreference models to a new domain. We develop methods to improve the span representations via (1) a retrofitting loss to incentivize span representations to satisfy a knowledge-based distance function and (2) a scaffolding loss to guide the recovery of knowledge from the span representation. By integrating these losses, our model is able to improve our baseline precision and F-1 score. In particular, we show that incorporating knowledge with end-to-end coreference models results in better performance on the most challenging, domain-specific spans.

pdf bib
Coreference by Appearance: Visually Grounded Event Coreference Resolution
Liming Wang | Shengyu Feng | Xudong Lin | Manling Li | Heng Ji | Shih-Fu Chang

Event coreference resolution is critical to understand events in the growing number of online news with multiple modalities including text, video, speech, etc. However, the events and entities depicting in different modalities may not be perfectly aligned and can be difficult to annotate, which makes the task especially challenging with little supervision available. To address the above issues, we propose a supervised model based on attention mechanism and an unsupervised model based on statistical machine translation, capable of learning the relative importance of modalities for event coreference resolution. Experiments on a video multimedia event dataset show that our multimodal models outperform text-only systems in event coreference resolution tasks. A careful analysis reveals that the performance gain of the multimodal model especially under unsupervised settings comes from better learning of visually salient events.

pdf bib
Anatomy of OntoGUMAdapting GUM to the OntoNotes Scheme to Evaluate Robustness of SOTA Coreference Algorithms
Yilun Zhu | Sameer Pradhan | Amir Zeldes

SOTA coreference resolution produces increasingly impressive scores on the OntoNotes benchmark. However lack of comparable data following the same scheme for more genres makes it difficult to evaluate generalizability to open domain data. Zhu et al. (2021) introduced the creation of the OntoGUM corpus for evaluating geralizability of the latest neural LM-based end-to-end systems. This paper covers details of the mapping process which is a set of deterministic rules applied to the rich syntactic and discourse annotations manually annotated in the GUM corpus. Out-of-domain evaluation across 12 genres shows nearly 15-20% degradation for both deterministic and deep learning systems, indicating a lack of generalizability or covert overfitting in existing coreference resolution models.

pdf bib
Understanding Mention Detector-Linker Interaction in Neural Coreference Resolution
Zhaofeng Wu | Matt Gardner

Despite significant recent progress in coreference resolution, the quality of current state-of-the-art systems still considerably trails behind human-level performance. Using the CoNLL-2012 and PreCo datasets, we dissect the best instantiation of the mainstream end-to-end coreference resolution model that underlies most current best-performing coreference systems, and empirically analyze the behavior of its two components: mention detector and mention linker. While the detector traditionally focuses heavily on recall as a design decision, we demonstrate the importance of precision, calling for their balance. However, we point out the difficulty in building a precise detector due to its inability to make important anaphoricity decisions. We also highlight the enormous room for improving the linker and show that the rest of its errors mainly involve pronoun resolution. We propose promising next steps and hope our findings will help future research in coreference resolution.


pdf (full)
bib (full)
Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances

pdf bib
Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances
Eduard Dragut | Yunyao Li | Lucian Popa | Slobodan Vucetic

pdf bib
Leveraging Wikipedia Navigational Templates for Curating Domain-Specific Fuzzy Conceptual Bases
Krati Saxena | Tushita Singh | Ashwini Patil | Sagar Sunkle | Vinay Kulkarni

Domain-specific conceptual bases use key concepts to capture domain scope and relevant information. Conceptual bases serve as a foundation for various downstream tasks, including ontology construction, information mapping, and analysis. However, building conceptual bases necessitates domain awareness and takes time. Wikipedia navigational templates offer multiple articles on the same/similar domain. It is possible to use the templates to recognize fundamental concepts that shape the domain. Earlier work in this domain used Wikipedia’s structured and unstructured data to construct open-domain ontologies, domain terminologies, and knowledge bases. We present a novel method for leveraging navigational templates to create domain-specific fuzzy conceptual bases in this work. Our system generates knowledge graphs from the articles mentioned in the template, which we then process using Wikidata and machine learning algorithms. We filter important concepts using fuzzy logic on network metrics to create a crude conceptual base. Finally, the expert helps by refining the conceptual base. We demonstrate our system using an example of RNA virus antiviral drugs.

pdf bib
It is better to Verify: Semi-Supervised Learning with a human in the loop for large-scale NLU models
Verena Weber | Enrico Piovano | Melanie Bradford

When a NLU model is updated, new utter- ances must be annotated to be included for training. However, manual annotation is very costly. We evaluate a semi-supervised learning workflow with a human in the loop in a produc- tion environment. The previous NLU model predicts the annotation of the new utterances, a human then reviews the predicted annotation. Only when the NLU prediction is assessed as incorrect the utterance is sent for human anno- tation. Experimental results show that the pro- posed workflow boosts the performance of the NLU model while significantly reducing the annotation volume. Specifically, in our setup, we see improvements of up to 14.16% for a recall-based metric and up to 9.57% for a F1- score based metric, while reducing the annota- tion volume by 97% and overall cost by 60% for each iteration.

pdf bib
ViziTex: Interactive Visual Sense-Making of Text Corpora
Natraj Raman | Sameena Shah | Tucker Balch | Manuela Veloso

Information visualization is critical to analytical reasoning and knowledge discovery. We present an interactive studio that integrates perceptive visualization techniques with powerful text analytics algorithms to assist humans in sense-making of large complex text corpora. The novel visual representations introduced here encode the features delivered by modern text mining models using advanced metaphors such as hypergraphs, nested topologies and tessellated planes. They enhance human-computer interaction experience for various tasks such as summarization, exploration, organization and labeling of documents. We demonstrate the ability of the visuals to surface the structure, relations and concepts from documents across different domains.

pdf bib
A Visualization Approach for Rapid Labeling of Clinical Notes for Smoking Status Extraction
Saman Enayati | Ziyu Yang | Benjamin Lu | Slobodan Vucetic

Labeling is typically the most human-intensive step during the development of supervised learning models. In this paper, we propose a simple and easy-to-implement visualization approach that reduces cognitive load and increases the speed of text labeling. The approach is fine-tuned for task of extraction of patient smoking status from clinical notes. The proposed approach consists of the ordering of sentences that mention smoking, centering them at smoking tokens, and annotating to enhance informative parts of the text. Our experiments on clinical notes from the MIMIC-III clinical database demonstrate that our visualization approach enables human annotators to label sentences up to 3 times faster than with a baseline approach.

pdf bib
Semi-supervised Interactive Intent Labeling
Saurav Sahay | Eda Okur | Nagib Hakim | Lama Nachman

Building the Natural Language Understanding (NLU) modules of task-oriented Spoken Dialogue Systems (SDS) involves a definition of intents and entities, collection of task-relevant data, annotating the data with intents and entities, and then repeating the same process over and over again for adding any functionality/enhancement to the SDS. In this work, we showcase an Intent Bulk Labeling system where SDS developers can interactively label and augment training data from unlabeled utterance corpora using advanced clustering and visual labeling methods. We extend the Deep Aligned Clustering work with a better backbone BERT model, explore techniques to select the seed data for labeling, and develop a data balancing method using an oversampling technique that utilizes paraphrasing models. We also look at the effect of data augmentation on the clustering process. Our results show that we can achieve over 10% gain in clustering accuracy on some datasets using the combination of the above techniques. Finally, we extract utterance embeddings from the clustering model and plot the data to interactively bulk label the samples, reducing the time and effort for data labeling of the whole dataset significantly.

pdf bib
Human-In-The-LoopEntity Linking for Low Resource Domains
Jan-Christoph Klie | Richard Eckart de Castilho | Iryna Gurevych

Entity linking (EL) is concerned with disambiguating entity mentions in a text against knowledge bases (KB). To quickly annotate texts with EL even in low-resource domains and noisy text, we present a novel Human-In-The-Loop EL approach. We show that it greatly outperforms a strong baseline in simulation. In a user study, annotation time is reduced by 35 % compared to annotating without interactive support; users report that they strongly prefer our system over ones without. An open-source and ready-to-use implementation based on the text annotation platform is made available.

pdf bib
Bridging Multi-disciplinary Collaboration Challenges in ML Development via Domain Knowledge Elicitation
Soya Park

Building a machine learning model in a sophisticated domain is a time-consuming process, partially due to the steep learning curve of domain knowledge for data scientists. We introduce Ziva, an interface for supporting domain knowledge from domain experts to data scientists in two ways: (1) a concept creation interface where domain experts extract important concept of the domain and (2) five kinds of justification elicitation interfaces that solicit elicitation how the domain concept are expressed in data instances.

pdf bib
Active learning and negative evidence for language identification
Thomas Lippincott | Ben Van Durme

Language identification (LID), the task of determining the natural language of a given text, is an essential first step in most NLP pipelines. While generally a solved problem for documents of sufficient length and languages with ample training data, the proliferation of microblogs and other social media has made it increasingly common to encounter use-cases that *don’t* satisfy these conditions. In these situations, the fundamental difficulty is the lack of, and cost of gathering, labeled data: unlike some annotation tasks, no single “expert” can quickly and reliably identify more than a handful of languages. This leads to a natural question: can we gain useful information when annotators are only able to *rule out* languages for a given document, rather than supply a positive label? What are the optimal choices for gathering and representing such *negative evidence* as a model is trained? In this paper, we demonstrate that using negative evidence can improve the performance of a simple neural LID model. This improvement is sensitive to policies of how the evidence is represented in the loss function, and for deciding which annotators to employ given the instance and model state. We consider simple policies and report experimental results that indicate the optimal choices for this task. We conclude with a discussion of future work to determine if and how the results generalize to other classification tasks.

pdf bib
Towards integrated, interactive, and extensible text data analytics with Leam
Peter Griggs | Cagatay Demiralp | Sajjadur Rahman

From tweets to product reviews, text is ubiquitous on the web and often contains valuable information for both enterprises and consumers. However, the online text is generally noisy and incomplete, requiring users to process and analyze the data to extract insights. While there are systems effective for different stages of text analysis, users lack extensible platforms to support interactive text analysis workflows end-to-end. To facilitate integrated text analytics, we introduce LEAM, which aims at combining the strengths of spreadsheets, computational notebooks, and interactive visualizations. LEAM supports interactive analysis via GUI-based interactions and provides a declarative specification language, implemented based on a visual text algebra, to enable user-guided analysis. We evaluate LEAM through two case studies using two popular Kaggle text analytics workflows to understand the strengths and weaknesses of the system.

pdf bib
Data Cleaning Tools for Token Classification Tasks
Karthik Muthuraman | Frederick Reiss | Hong Xu | Bryan Cutler | Zachary Eichenberger

Human-in-the-loop systems for cleaning NLP training data rely on automated sieves to isolate potentially-incorrect labels for manual review. We have developed a novel technique for flagging potentially-incorrect labels with high sensitivity in named entity recognition corpora. We incorporated our sieve into an end-to-end system for cleaning NLP corpora, implemented as a modular collection of Jupyter notebooks built on extensions to the Pandas DataFrame library. We used this system to identify incorrect labels in the CoNLL-2003 corpus for English-language named entity recognition (NER), one of the most influential corpora for NER model research. Unlike previous work that only looked at a subset of the corpus’s validation fold, our automated sieve enabled us to examine the entire corpus in depth. Across the entire CoNLL-2003 corpus, we identified over 1300 incorrect labels (out of 35089 in the corpus). We have published our corrections, along with the code we used in our experiments. We are developing a repeatable version of the process we used on the CoNLL-2003 corpus as an open-source library.

pdf bib
Building Low-Resource NER Models Using Non-Speaker Annotations
Tatiana Tsygankova | Francesca Marini | Stephen Mayhew | Dan Roth

In low-resource natural language processing (NLP), the key problems are a lack of target language training data, and a lack of native speakers to create it. Cross-lingual methods have had notable success in addressing these concerns, but in certain common circumstances, such as insufficient pre-training corpora or languages far from the source language, their performance suffers. In this work we propose a complementary approach to building low-resource Named Entity Recognition (NER) models using “non-speaker” (NS) annotations, provided by annotators with no prior experience in the target language. We recruit 30 participants in a carefully controlled annotation experiment with Indonesian, Russian, and Hindi. We show that use of NS annotators produces results that are consistently on par or better than cross-lingual methods built on modern contex