Aaron Traylor


pdf bib
Transferring Representations of Logical Connectives
Aaron Traylor | Ellie Pavlick | Roman Feiman
Proceedings of the 1st and 2nd Workshops on Natural Logic Meets Machine Learning (NALOMA)

In modern natural language processing pipelines, it is common practice to “pretrain” a generative language model on a large corpus of text, and then to “finetune” the created representations by continuing to train them on a discriminative textual inference task. However, it is not immediately clear whether the logical meaning necessary to model logical entailment is captured by language models in this paradigm. We examine this pretrain-finetune recipe with language models trained on a synthetic propositional language entailment task, and present results on test sets probing models’ knowledge of axioms of first order logic.

pdf bib
AND does not mean OR: Using Formal Languages to Study Language Models’ Representations
Aaron Traylor | Roman Feiman | Ellie Pavlick
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

A current open question in natural language processing is to what extent language models, which are trained with access only to the form of language, are able to capture the meaning of language. This question is challenging to answer in general, as there is no clear line between meaning and form, but rather meaning constrains form in consistent ways. The goal of this study is to offer insights into a narrower but critical subquestion: Under what conditions should we expect that meaning and form covary sufficiently, such that a language model with access only to form might nonetheless succeed in emulating meaning? Focusing on several formal languages (propositional logic and a set of programming languages), we generate training corpora using a variety of motivated constraints, and measure a distributional language model’s ability to differentiate logical symbols (AND, OR, and NOT). Our findings are largely negative: none of our simulated training corpora result in models which definitively differentiate meaningfully different symbols (e.g., AND vs. OR), suggesting a limitation to the types of semantic signals that current models are able to exploit.


pdf bib
Optimal Transport-based Alignment of Learned Character Representations for String Similarity
Derek Tam | Nicholas Monath | Ari Kobren | Aaron Traylor | Rajarshi Das | Andrew McCallum
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

String similarity models are vital for record linkage, entity resolution, and search. In this work, we present STANCE–a learned model for computing the similarity of two strings. Our approach encodes the characters of each string, aligns the encodings using Sinkhorn Iteration (alignment is posed as an instance of optimal transport) and scores the alignment with a convolutional neural network. We evaluate STANCE’s ability to detect whether two strings can refer to the same entity–a task we term alias detection. We construct five new alias detection datasets (and make them publicly available). We show that STANCE (or one of its variants) outperforms both state-of-the-art and classic, parameter-free similarity models on four of the five datasets. We also demonstrate STANCE’s ability to improve downstream tasks by applying it to an instance of cross-document coreference and show that it leads to a 2.8 point improvement in Bˆ3 F1 over the previous state-of-the-art approach.


pdf bib
Seq2Seq Models with Dropout can Learn Generalizable Reduplication
Brandon Prickett | Aaron Traylor | Joe Pater
Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology

Natural language reduplication can pose a challenge to neural models of language, and has been argued to require variables (Marcus et al., 1999). Sequence-to-sequence neural networks have been shown to perform well at a number of other morphological tasks (Cotterell et al., 2016), and produce results that highly correlate with human behavior (Kirov, 2017; Kirov & Cotterell, 2018) but do not include any explicit variables in their architecture. We find that they can learn a reduplicative pattern that generalizes to novel segments if they are trained with dropout (Srivastava et al., 2014). We argue that this matches the scope of generalization observed in human reduplication.