Abdelrahman Mohamed


pdf bib
textless-lib: a Library for Textless Spoken Language Processing
Eugene Kharitonov | Jade Copet | Kushal Lakhotia | Tu Anh Nguyen | Paden Tomasello | Ann Lee | Ali Elkahky | Wei-Ning Hsu | Abdelrahman Mohamed | Emmanuel Dupoux | Yossi Adi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

Textless spoken language processing is an exciting area of research that promises to extend applicability of the standard NLP toolset onto spoken language and languages with few or no textual resources.Here, we introduce textless-lib, a PyTorch-based library aimed to facilitate research in the area. We describe the building blocks that the library provides and demonstrate its usability by discuss three different use-case examples: (i) speaker probing, (ii) speech resynthesis and compression, and (iii) speech continuation. We believe that textless-lib substantially simplifies research the textless setting and will be handful not only for speech researchers but also for the NLP community at large.

pdf bib
Self-supervised Representation Learning for Speech Processing
Hung-yi Lee | Abdelrahman Mohamed | Shinji Watanabe | Tara Sainath | Karen Livescu | Shang-Wen Li | Shu-wen Yang | Katrin Kirchhoff
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts

There is a trend in the machine learning community to adopt self-supervised approaches to pre-train deep networks. Self-supervised representation learning (SSL) utilizes proxy supervised learning tasks, for example, distinguishing parts of the input signal from distractors, or generating masked input segments conditioned on the unmasked ones, to obtain training data from unlabeled corpora. BERT and GPT in NLP and SimCLR and BYOL in CV are famous examples in this direction. These approaches make it possible to use a tremendous amount of unlabeled data available on the web to train large networks and solve complicated tasks. Thus, SSL has the potential to scale up current machine learning technologies, especially for low-resourced, under-represented use cases, and democratize the technologies. Recently self-supervised approaches for speech processing are also gaining popularity. There are several workshops in relevant topics hosted at ICML 2020 (https://icml-sas.gitlab.io/), NeurIPS 2020 (https://neurips-sas-2020.github.io/), and AAAI 2022 (https://aaai-sas-2022.github.io/). However, there is no previous tutorial about a similar topic based on the authors’ best knowledge. Due to the growing popularity of SSL, and the shared mission of the areas in bringing speech and language technologies to more use cases with better quality and scaling the technologies for under-represented languages, we propose this tutorial to systematically survey the latest SSL techniques, tools, datasets, and performance achievement in speech processing. The proposed tutorial is highly relevant to the special theme of ACL about language diversity. One of the main focuses of the tutorial is leveraging SSL to reduce the dependence of speech technologies on labeled data, and to scale up the technologies especially for under-represented languages and use cases.

pdf bib
Unified Speech-Text Pre-training for Speech Translation and Recognition
Yun Tang | Hongyu Gong | Ning Dong | Changhan Wang | Wei-Ning Hsu | Jiatao Gu | Alexei Baevski | Xian Li | Abdelrahman Mohamed | Michael Auli | Juan Pino
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this work, we describe a method to jointly pre-train speech and text in an encoder-decoder modeling framework for speech translation and recognition. The proposed method utilizes multi-task learning to integrate four self-supervised and supervised subtasks for cross modality learning. A self-supervised speech subtask, which leverages unlabelled speech data, and a (self-)supervised text to text subtask, which makes use of abundant text training data, take up the majority of the pre-training time. Two auxiliary supervised speech tasks are included to unify speech and text modeling space. Detailed analysis reveals learning interference among subtasks. In order to alleviate the subtask interference, two pre-training configurations are proposed for speech translation and speech recognition respectively. Our experiments show the proposed method can effectively fuse speech and text information into one model. It achieves between 1.7 and 2.3 BLEU improvement above the state of the art on the MuST-C speech translation dataset and comparable WERs to wav2vec 2.0 on the Librispeech speech recognition task.

pdf bib
SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark for Semantic and Generative Capabilities
Hsiang-Sheng Tsai | Heng-Jui Chang | Wen-Chin Huang | Zili Huang | Kushal Lakhotia | Shu-wen Yang | Shuyan Dong | Andy Liu | Cheng-I Lai | Jiatong Shi | Xuankai Chang | Phil Hall | Hsuan-Jui Chen | Shang-Wen Li | Shinji Watanabe | Abdelrahman Mohamed | Hung-yi Lee
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transfer learning has proven to be crucial in advancing the state of speech and natural language processing research in recent years. In speech, a model pre-trained by self-supervised learning transfers remarkably well on multiple tasks. However, the lack of a consistent evaluation methodology is limiting towards a holistic understanding of the efficacy of such models. SUPERB was a step towards introducing a common benchmark to evaluate pre-trained models across various speech tasks. In this paper, we introduce SUPERB-SG, a new benchmark focusing on evaluating the semantic and generative capabilities of pre-trained models by increasing task diversity and difficulty over SUPERB. We use a lightweight methodology to test the robustness of representations learned by pre-trained models under shifts in data domain and quality across different types of tasks. It entails freezing pre-trained model parameters, only using simple task-specific trainable heads. The goal is to be inclusive of all researchers, and encourage efficient use of computational resources. We also show that the task diversity of SUPERB-SG coupled with limited task supervision is an effective recipe for evaluating the generalizability of model representation.

pdf bib
Text-Free Prosody-Aware Generative Spoken Language Modeling
Eugene Kharitonov | Ann Lee | Adam Polyak | Yossi Adi | Jade Copet | Kushal Lakhotia | Tu Anh Nguyen | Morgane Riviere | Abdelrahman Mohamed | Emmanuel Dupoux | Wei-Ning Hsu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Speech pre-training has primarily demonstrated efficacy on classification tasks, while its capability of generating novel speech, similar to how GPT-2 can generate coherent paragraphs, has barely been explored. Generative Spoken Language Modeling (GSLM) (CITATION) is the only prior work addressing the generative aspect of speech pre-training, which builds a text-free language model using discovered units. Unfortunately, because the units used in GSLM discard most prosodic information, GSLM fails to leverage prosody for better comprehension and does not generate expressive speech. In this work, we present a prosody-aware generative spoken language model (pGSLM). It is composed of a multi-stream transformer language model (MS-TLM) of speech, represented as discovered unit and prosodic feature streams, and an adapted HiFi-GAN model converting MS-TLM outputs to waveforms. Experimental results show that the pGSLM can utilize prosody to improve both prosody and content modeling, and also generate natural, meaningful, and coherent speech given a spoken prompt. Audio samples can be found at https://speechbot.github.io/pgslm. Codes and models are available at https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/pgslm.


pdf bib
On Generative Spoken Language Modeling from Raw Audio
Kushal Lakhotia | Eugene Kharitonov | Wei-Ning Hsu | Yossi Adi | Adam Polyak | Benjamin Bolte | Tu-Anh Nguyen | Jade Copet | Alexei Baevski | Abdelrahman Mohamed | Emmanuel Dupoux
Transactions of the Association for Computational Linguistics, Volume 9

Abstract We introduce Generative Spoken Language Modeling, the task of learning the acoustic and linguistic characteristics of a language from raw audio (no text, no labels), and a set of metrics to automatically evaluate the learned representations at acoustic and linguistic levels for both encoding and generation. We set up baseline systems consisting of a discrete speech encoder (returning pseudo-text units), a generative language model (trained on pseudo- text), and a speech decoder (generating a waveform from pseudo-text) all trained without supervision and validate the proposed metrics with human evaluation. Across 3 speech encoders (CPC, wav2vec 2.0, HuBERT), we find that the number of discrete units (50, 100, or 200) matters in a task-dependent and encoder- dependent way, and that some combinations approach text-based systems.1


pdf bib
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
Mike Lewis | Yinhan Liu | Naman Goyal | Marjan Ghazvininejad | Abdelrahman Mohamed | Omer Levy | Veselin Stoyanov | Luke Zettlemoyer
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We present BART, a denoising autoencoder for pretraining sequence-to-sequence models. BART is trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. It uses a standard Tranformer-based neural machine translation architecture which, despite its simplicity, can be seen as generalizing BERT (due to the bidirectional encoder), GPT (with the left-to-right decoder), and other recent pretraining schemes. We evaluate a number of noising approaches, finding the best performance by both randomly shuffling the order of sentences and using a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa on GLUE and SQuAD, and achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 3.5 ROUGE. BART also provides a 1.1 BLEU increase over a back-translation system for machine translation, with only target language pretraining. We also replicate other pretraining schemes within the BART framework, to understand their effect on end-task performance.


pdf bib
Learning Lexical Embeddings with Syntactic and Lexicographic Knowledge
Tong Wang | Abdelrahman Mohamed | Graeme Hirst
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)