Construction Grammar (CxG) is a paradigm from cognitive linguistics emphasising the connection between syntax and semantics. Rather than rules that operate on lexical items, it posits constructions as the central building blocks of language, i.e., linguistic units of different granularity that combine syntax and semantics. As a first step towards assessing the compatibility of CxG with the syntactic and semantic knowledge demonstrated by state-of-the-art pretrained language models (PLMs), we present an investigation of their capability to classify and understand one of the most commonly studied constructions, the English comparative correlative (CC). We conduct experiments examining the classification accuracy of a syntactic probe on the one hand and the models’ behaviour in a semantic application task on the other, with BERT, RoBERTa, and DeBERTa as the example PLMs. Our results show that all three investigated PLMs are able to recognise the structure of the CC but fail to use its meaning. While human-like performance of PLMs on many NLP tasks has been alleged, this indicates that PLMs still suffer from substantial shortcomings in central domains of linguistic knowledge.
In this paper, we present our text augmentation based approach for the Table Statement Support Subtask (Phase A) of SemEval-2021 Task 9. We experiment with different text augmentation techniques such as back translation and synonym swapping using Word2Vec and WordNet. We show that text augmentation techniques lead to 2.5% improvement in F1 on the test set. Further, we investigate the impact of domain adaptation and joint learning on fact verification in tabular data by utilizing the SemTabFacts and TabFact datasets. We observe that joint learning improves the F1 scores on the SemTabFacts and TabFact test sets by 3.31% and 0.77%, respectively.
Multi-label text classification is a challenging task because it requires capturing label dependencies. It becomes even more challenging when class distribution is long-tailed. Resampling and re-weighting are common approaches used for addressing the class imbalance problem, however, they are not effective when there is label dependency besides class imbalance because they result in oversampling of common labels. Here, we introduce the application of balancing loss functions for multi-label text classification. We perform experiments on a general domain dataset with 90 labels (Reuters-21578) and a domain-specific dataset from PubMed with 18211 labels. We find that a distribution-balanced loss function, which inherently addresses both the class imbalance and label linkage problems, outperforms commonly used loss functions. Distribution balancing methods have been successfully used in the image recognition field. Here, we show their effectiveness in natural language processing. Source code is available at
https://github.com/blessu/BalancedLossNLP.
Relation classification is one of the key topics in information extraction, which can be used to construct knowledge bases or to provide useful information for question answering. Current approaches for relation classification are mainly focused on the English language and require lots of training data with human annotations. Creating and annotating a large amount of training data for low-resource languages is impractical and expensive. To overcome this issue, we propose two cross-lingual relation classification models: a baseline model based on Multilingual BERT and a new multilingual pretraining setup, which significantly improves the baseline with distant supervision. For evaluation, we introduce a new public benchmark dataset for cross-lingual relation classification in English, French, German, Spanish, and Turkish, called RELX. We also provide the RELX-Distant dataset, which includes hundreds of thousands of sentences with relations from Wikipedia and Wikidata collected by distant supervision for these languages. Our code and data are available at:
https://github.com/boun-tabi/RELXIn this paper, we present the current version of two different treebanks, the re-annotation of the Turkish PUD Treebank and the first annotation of the Turkish National Corpus Universal Dependency (henceforth TNC-UD). The annotation of both treebanks, the Turkish PUD Treebank and TNC-UD, was carried out based on the decisions concerning linguistic adequacy of re-annotation of the Turkish IMST-UD Treebank (Türk et. al., forthcoming). Both of the treebanks were annotated with the same annotation process and morphological and syntactic analyses. The TNC-UD is planned to have 10,000 sentences. In this paper, we will present the first 500 sentences along with the annotation PUD Treebank. Moreover, this paper also offers the parsing results of a graph-based neural parser on the previous and re-annotated PUD, as well as the TNC-UD. In light of the comparisons, even though we observe a slight decrease in the attachment scores of the Turkish PUD treebank, we demonstrate that the annotation of the TNC-UD improves the parsing accuracy of Turkish. In addition to the treebanks, we have also constructed a custom annotation software with advanced filtering and morphological editing options. Both the treebanks, including a full edit-history and the annotation guidelines, and the custom software are publicly available under an open license online.