Abteen Ebrahimi


2022

pdf bib
Open-domain Dialogue Generation: What We Can Do, Cannot Do, And Should Do Next
Katharina Kann | Abteen Ebrahimi | Joewie Koh | Shiran Dudy | Alessandro Roncone
Proceedings of the 4th Workshop on NLP for Conversational AI

Human–computer conversation has long been an interest of artificial intelligence and natural language processing research. Recent years have seen a dramatic improvement in quality for both task-oriented and open-domain dialogue systems, and an increasing amount of research in the area. The goal of this work is threefold: (1) to provide an overview of recent advances in the field of open-domain dialogue, (2) to summarize issues related to ethics, bias, and fairness that the field has identified as well as typical errors of dialogue systems, and (3) to outline important future challenges. We hope that this work will be of interest to both new and experienced researchers in the area.

pdf bib
AmericasNLI: Evaluating Zero-shot Natural Language Understanding of Pretrained Multilingual Models in Truly Low-resource Languages
Abteen Ebrahimi | Manuel Mager | Arturo Oncevay | Vishrav Chaudhary | Luis Chiruzzo | Angela Fan | John Ortega | Ricardo Ramos | Annette Rios | Ivan Vladimir Meza Ruiz | Gustavo Giménez-Lugo | Elisabeth Mager | Graham Neubig | Alexis Palmer | Rolando Coto-Solano | Thang Vu | Katharina Kann
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pretrained multilingual models are able to perform cross-lingual transfer in a zero-shot setting, even for languages unseen during pretraining. However, prior work evaluating performance on unseen languages has largely been limited to low-level, syntactic tasks, and it remains unclear if zero-shot learning of high-level, semantic tasks is possible for unseen languages. To explore this question, we present AmericasNLI, an extension of XNLI (Conneau et al., 2018) to 10 Indigenous languages of the Americas. We conduct experiments with XLM-R, testing multiple zero-shot and translation-based approaches. Additionally, we explore model adaptation via continued pretraining and provide an analysis of the dataset by considering hypothesis-only models. We find that XLM-R’s zero-shot performance is poor for all 10 languages, with an average performance of 38.48%. Continued pretraining offers improvements, with an average accuracy of 43.85%. Surprisingly, training on poorly translated data by far outperforms all other methods with an accuracy of 49.12%.

2021

pdf bib
Findings of the AmericasNLP 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas
Manuel Mager | Arturo Oncevay | Abteen Ebrahimi | John Ortega | Annette Rios | Angela Fan | Ximena Gutierrez-Vasques | Luis Chiruzzo | Gustavo Giménez-Lugo | Ricardo Ramos | Ivan Vladimir Meza Ruiz | Rolando Coto-Solano | Alexis Palmer | Elisabeth Mager-Hois | Vishrav Chaudhary | Graham Neubig | Ngoc Thang Vu | Katharina Kann
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

This paper presents the results of the 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas. The shared task featured two independent tracks, and participants submitted machine translation systems for up to 10 indigenous languages. Overall, 8 teams participated with a total of 214 submissions. We provided training sets consisting of data collected from various sources, as well as manually translated sentences for the development and test sets. An official baseline trained on this data was also provided. Team submissions featured a variety of architectures, including both statistical and neural models, and for the majority of languages, many teams were able to considerably improve over the baseline. The best performing systems achieved 12.97 ChrF higher than baseline, when averaged across languages.

pdf bib
How to Adapt Your Pretrained Multilingual Model to 1600 Languages
Abteen Ebrahimi | Katharina Kann
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pretrained multilingual models (PMMs) enable zero-shot learning via cross-lingual transfer, performing best for languages seen during pretraining. While methods exist to improve performance for unseen languages, they have almost exclusively been evaluated using amounts of raw text only available for a small fraction of the world’s languages. In this paper, we evaluate the performance of existing methods to adapt PMMs to new languages using a resource available for close to 1600 languages: the New Testament. This is challenging for two reasons: (1) the small corpus size, and (2) the narrow domain. While performance drops for all approaches, we surprisingly still see gains of up to 17.69% accuracy for part-of-speech tagging and 6.29 F1 for NER on average over all languages as compared to XLM-R. Another unexpected finding is that continued pretraining, the simplest approach, performs best. Finally, we perform a case study to disentangle the effects of domain and size and to shed light on the influence of the finetuning source language.

2019

pdf bib
Curate and Generate: A Corpus and Method for Joint Control of Semantics and Style in Neural NLG
Shereen Oraby | Vrindavan Harrison | Abteen Ebrahimi | Marilyn Walker
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Neural natural language generation (NNLG) from structured meaning representations has become increasingly popular in recent years. While we have seen progress with generating syntactically correct utterances that preserve semantics, various shortcomings of NNLG systems are clear: new tasks require new training data which is not available or straightforward to acquire, and model outputs are simple and may be dull and repetitive. This paper addresses these two critical challenges in NNLG by: (1) scalably (and at no cost) creating training datasets of parallel meaning representations and reference texts with rich style markup by using data from freely available and naturally descriptive user reviews, and (2) systematically exploring how the style markup enables joint control of semantic and stylistic aspects of neural model output. We present YelpNLG, a corpus of 300,000 rich, parallel meaning representations and highly stylistically varied reference texts spanning different restaurant attributes, and describe a novel methodology that can be scalably reused to generate NLG datasets for other domains. The experiments show that the models control important aspects, including lexical choice of adjectives, output length, and sentiment, allowing the models to successfully hit multiple style targets without sacrificing semantics.