Abudurexiti Reheman


pdf bib
Augmenting Large Language Model Translators via Translation Memories
Yongyu Mu | Abudurexiti Reheman | Zhiquan Cao | Yuchun Fan | Bei Li | Yinqiao Li | Tong Xiao | Chunliang Zhang | Jingbo Zhu
Findings of the Association for Computational Linguistics: ACL 2023

Using translation memories (TMs) as prompts is a promising approach to in-context learning of machine translation models. In this work, we take a step towards prompting large language models (LLMs) with TMs and making them better translators. We find that the ability of LLMs to “understand” prompts is indeed helpful for making better use of TMs. Experiments show that the results of a pre-trained LLM translator can be greatly improved by using high-quality TM-based prompts. These results are even comparable to those of the state-of-the-art NMT systems which have access to large-scale in-domain bilingual data and are well tuned on the downstream tasks.


pdf bib
The NiuTrans Machine Translation Systems for WMT20
Yuhao Zhang | Ziyang Wang | Runzhe Cao | Binghao Wei | Weiqiao Shan | Shuhan Zhou | Abudurexiti Reheman | Tao Zhou | Xin Zeng | Laohu Wang | Yongyu Mu | Jingnan Zhang | Xiaoqian Liu | Xuanjun Zhou | Yinqiao Li | Bei Li | Tong Xiao | Jingbo Zhu
Proceedings of the Fifth Conference on Machine Translation

This paper describes NiuTrans neural machine translation systems of the WMT20 news translation tasks. We participated in Japanese<->English, English->Chinese, Inuktitut->English and Tamil->English total five tasks and rank first in Japanese<->English both sides. We mainly utilized iterative back-translation, different depth and widen model architectures, iterative knowledge distillation and iterative fine-tuning. And we find that adequately widened and deepened the model simultaneously, the performance will significantly improve. Also, iterative fine-tuning strategy we implemented is effective during adapting domain. For Inuktitut->English and Tamil->English tasks, we built multilingual models separately and employed pretraining word embedding to obtain better performance.