In the realm of text manipulation and linguistic transformation, the question of authorship has been a subject of fascination and philosophical inquiry. Much like the Ship of Theseus paradox, which ponders whether a ship remains the same when each of its original planks is replaced, our research delves into an intriguing question: Does a text retain its original authorship when it undergoes numerous paraphrasing iterations? Specifically, since Large Language Models (LLMs) have demonstrated remarkable proficiency in both the generation of original content and the modification of human-authored texts, a pivotal question emerges concerning the determination of authorship in instances where LLMs or similar paraphrasing tools are employed to rephrase the text–i.e., whether authorship should be attributed to the original human author or the AI-powered tool. Therefore, we embark on a philosophical voyage through the seas of language and authorship to unravel this intricate puzzle. Using a computational approach, we discover that the diminishing performance in text classification models, with each successive paraphrasing iteration, is closely associated with the extent of deviation from the original author’s style, thus provoking a reconsideration of the current notion of authorship.
The Uniform Information Density (UID) principle posits that humans prefer to spread information evenly during language production. We examine if this UID principle can help capture differences between Large Language Models (LLMs)-generated and human-generated texts. We propose GPT-who, the first psycholinguistically-inspired domain-agnostic statistical detector. This detector employs UID-based featuresto model the unique statistical signature of each LLM and human author for accurate detection. We evaluate our method using 4 large-scale benchmark datasets and find that GPT-who outperforms state-of-the-art detectors (both statistical- & non-statistical) such as GLTR, GPTZero, DetectGPT, OpenAI detector, and ZeroGPT by over 20% across domains.In addition to better performance, it is computationally inexpensive and utilizes an interpretable representation of text articles. We find that GPT-who can distinguish texts generated by very sophisticated LLMs, even when the overlying text is indiscernible.UID-based measures for all datasets and code are available at https://github.com/saranya-venkatraman/gpt-who.
High-quality text generation capability of latest Large Language Models (LLMs) causes concerns about their misuse (e.g., in massive generation/spread of disinformation). Machine-generated text (MGT) detection is important to cope with such threats. However, it is susceptible to authorship obfuscation (AO) methods, such as paraphrasing, which can cause MGTs to evade detection. So far, this was evaluated only in monolingual settings. Thus, the susceptibility of recently proposed multilingual detectors is still unknown. We fill this gap by comprehensively benchmarking the performance of 10 well-known AO methods, attacking 37 MGT detection methods against MGTs in 11 languages (i.e., 10 × 37 × 11 = 4,070 combinations). We also evaluate the effect of data augmentation on adversarial robustness using obfuscated texts. The results indicate that all tested AO methods can cause evasion of automated detection in all tested languages, where homoglyph attacks are especially successful. However, some of the AO methods severely damaged the text, making it no longer readable or easily recognizable by humans (e.g., changed language, weird characters).
In recent years, Natural Language Generation (NLG) techniques have greatly advanced, especially in the realm of Large Language Models (LLMs). With respect to the quality of generated texts, it is no longer trivial to tell the difference between human-written and LLMgenerated texts (i.e., deepfake texts). While this is a celebratory feat for NLG, it poses new security risks (e.g., the generation of misinformation). To combat this novel challenge, researchers have developed diverse techniques to detect deepfake texts. While this niche field of deepfake text detection is growing, the field of NLG is growing at a much faster rate, thus making it difficult to understand the complex interplay between state-of-the-art NLG methods and the detectability of their generated texts. To understand such inter-play, two new computational problems emerge: (1) Deepfake Text Attribution (DTA) and (2) Deepfake Text Obfuscation (DTO) problems, where the DTA problem is concerned with attributing the authorship of a given text to one of k NLG methods, while the DTO problem is to evade the authorship of a given text by modifying parts of the text. In this cutting-edge tutorial, therefore, we call attention to the serious security risk both emerging problems pose and give a comprehensive review of recent literature on the detection and obfuscation of deepfake text authorships. Our tutorial will be 3 hours long with a mix of lecture and hands-on examples for interactive audience participation. You can find our tutorial materials here: https://tinyurl.com/naacl24-tutorial.
There is a lack of research into capabilities of recent LLMs to generate convincing text in languages other than English and into performance of detectors of machine-generated text in multilingual settings. This is also reflected in the available benchmarks which lack authentic texts in languages other than English and predominantly cover older generators. To fill this gap, we introduce MULTITuDE, a novel benchmarking dataset for multilingual machine-generated text detection comprising of 74,081 authentic and machine-generated texts in 11 languages (ar, ca, cs, de, en, es, nl, pt, ru, uk, and zh) generated by 8 multilingual LLMs. Using this benchmark, we compare the performance of zero-shot (statistical and black-box) and fine-tuned detectors. Considering the multilinguality, we evaluate 1) how these detectors generalize to unseen languages (linguistically similar as well as dissimilar) and unseen LLMs and 2) whether the detectors improve their performance when trained on multiple languages.
Recent ubiquity and disruptive impacts of large language models (LLMs) have raised concerns about their potential to be misused (*.i.e, generating large-scale harmful and misleading content*). To combat this emerging risk of LLMs, we propose a novel “***Fighting Fire with Fire***” (F3) strategy that harnesses modern LLMs’ generative and emergent reasoning capabilities to counter human-written and LLM-generated disinformation. First, we leverage GPT-3.5-turbo to synthesize authentic and deceptive LLM-generated content through paraphrase-based and perturbation-based prefix-style prompts, respectively. Second, we apply zero-shot in-context semantic reasoning techniques with cloze-style prompts to discern genuine from deceptive posts and news articles. In our extensive experiments, we observe GPT-3.5-turbo’s zero-shot superiority for both in-distribution and out-of-distribution datasets, where GPT-3.5-turbo consistently achieved accuracy at 68-72%, unlike the decline observed in previous customized and fine-tuned disinformation detectors. Our codebase and dataset are available at https://github.com/mickeymst/F3.
Authorship Analysis, also known as stylometry, has been an essential aspect of Natural Language Processing (NLP) for a long time. Likewise, the recent advancement of Large Language Models (LLMs) has made authorship analysis increasingly crucial for distinguishing between human-written and AI-generated texts. However, these authorship analysis tasks have primarily been focused on written texts, not considering spoken texts. Thus, we introduce the largest benchmark for spoken texts - HANSEN( ̲Human ̲ANd ai ̲Spoken t ̲Ext be ̲Nchmark). HANSEN encompasses meticulous curation of existing speech datasets accompanied by transcripts, alongside the creation of novel AI-generated spoken text datasets. Together, it comprises 17 human datasets, and AI-generated spoken texts created using 3 prominent LLMs: ChatGPT, PaLM2, and Vicuna13B. To evaluate and demonstrate the utility of HANSEN, we perform Authorship Attribution (AA) & Author Verification (AV) on human-spoken datasets and conducted Human vs. AI text detection using state-of-the-art (SOTA) models. While SOTA methods, such as, character n-gram or Transformer-based model, exhibit similar AA & AV performance in human-spoken datasets compared to written ones, there is much room for improvement in AI-generated spoken text detection. The HANSEN benchmark is available at: https://huggingface.co/datasets/HANSEN-REPO/HANSEN
Recent progress in generative language models has enabled machines to generate astonishingly realistic texts. While there are many legitimate applications of such models, there is also a rising need to distinguish machine-generated texts from human-written ones (e.g., fake news detection). However, to our best knowledge, there is currently no benchmark environment with datasets and tasks to systematically study the so-called ”Turing Test” problem for neural text generation methods. In this work, we present the TURINGBENCH benchmark environment, which is comprised of (1) a dataset with 200K human- or machine-generated samples across 20 labels Human, GPT-1, GPT-2_small, GPT-2_medium, GPT-2_large,GPT-2_xl, GPT-2_PyTorch, GPT-3, GROVER_base, GROVER_large, GROVER_mega, CTRL, XLM, XLNET_base, XLNET_large, FAIR_wmt19, FAIR_wmt20, TRANSFORMER_XL, PPLM_distil, PPLM_gpt2, (2) two benchmark tasks–i.e., Turing Test (TT) and Authorship Attribution (AA), and (3) a website with leaderboards. Our preliminary experimental results using TURINGBENCH show that GPT-3 and FAIR_wmt20 are the current winners, among all language models tested, in generating the most human-like indistinguishable texts with the lowest F1 score by five state-of-the-art TT detection models. The TURINGBENCH is available at: https://turingbench.ist.psu.edu/
In recent years, the task of generating realistic short and long texts have made tremendous advancements. In particular, several recently proposed neural network-based language models have demonstrated their astonishing capabilities to generate texts that are challenging to distinguish from human-written texts with the naked eye. Despite many benefits and utilities of such neural methods, in some applications, being able to tell the “author” of a text in question becomes critically important. In this work, in the context of this Turing Test, we investigate the so-called authorship attribution problem in three versions: (1) given two texts T1 and T2, are both generated by the same method or not? (2) is the given text T written by a human or machine? (3) given a text T and k candidate neural methods, can we single out the method (among k alternatives) that generated T? Against one humanwritten and eight machine-generated texts (i.e., CTRL, GPT, GPT2, GROVER, XLM, XLNET, PPLM, FAIR), we empirically experiment with the performance of various models in three problems. By and large, we find that most generators still generate texts significantly different from human-written ones, thereby making three problems easier to solve. However, the qualities of texts generated by GPT2, GROVER, and FAIR are better, often confusing machine classifiers in solving three problems. All codes and datasets of our experiments are available at: https://bit.ly/ 302zWdz