Adam Miner


pdf bib
Cognitive Reframing of Negative Thoughts through Human-Language Model Interaction
Ashish Sharma | Kevin Rushton | Inna Lin | David Wadden | Khendra Lucas | Adam Miner | Theresa Nguyen | Tim Althoff
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A proven therapeutic technique to overcome negative thoughts is to replace them with a more hopeful “reframed thought.” Although therapy can help people practice and learn this Cognitive Reframing of Negative Thoughts, clinician shortages and mental health stigma commonly limit people’s access to therapy. In this paper, we conduct a human-centered study of how language models may assist people in reframing negative thoughts. Based on psychology literature, we define a framework of seven linguistic attributes that can be used to reframe a thought. We develop automated metrics to measure these attributes and validate them with expert judgements from mental health practitioners. We collect a dataset of 600 situations, thoughts and reframes from practitioners and use it to train a retrieval-enhanced in-context learning model that effectively generates reframed thoughts and controls their linguistic attributes. To investigate what constitutes a “high-quality” reframe, we conduct an IRB-approved randomized field study on a large mental health website with over 2,000 participants. Amongst other findings, we show that people prefer highly empathic or specific reframes, as opposed to reframes that are overly positive. Our findings provide key implications for the use of LMs to assist people in overcoming negative thoughts.


pdf bib
A Computational Approach to Understanding Empathy Expressed in Text-Based Mental Health Support
Ashish Sharma | Adam Miner | David Atkins | Tim Althoff
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Empathy is critical to successful mental health support. Empathy measurement has predominantly occurred in synchronous, face-to-face settings, and may not translate to asynchronous, text-based contexts. Because millions of people use text-based platforms for mental health support, understanding empathy in these contexts is crucial. In this work, we present a computational approach to understanding how empathy is expressed in online mental health platforms. We develop a novel unifying theoretically-grounded framework for characterizing the communication of empathy in text-based conversations. We collect and share a corpus of 10k (post, response) pairs annotated using this empathy framework with supporting evidence for annotations (rationales). We develop a multi-task RoBERTa-based bi-encoder model for identifying empathy in conversations and extracting rationales underlying its predictions. Experiments demonstrate that our approach can effectively identify empathic conversations. We further apply this model to analyze 235k mental health interactions and show that users do not self-learn empathy over time, revealing opportunities for empathy training and feedback.