Adarsh Pyarelal


2022

pdf bib
Rule Based Event Extraction for Artificial Social Intelligence
Remo Nitschke | Yuwei Wang | Chen Chen | Adarsh Pyarelal | Rebecca Sharp
Proceedings of the First Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning

Natural language (as opposed to structured communication modes such as Morse code) is by far the most common mode of communication between humans, and can thus provide significant insight into both individual mental states and interpersonal dynamics. As part of DARPA’s Artificial Social Intelligence for Successful Teams (ASIST) program, we are developing an AI agent team member that constructs and maintains models of their human teammates and provides appropriate task-relevant advice to improve team processes and mission performance. One of the key components of this agent is a module that uses a rule-based approach to extract task-relevant events from natural language utterances in real time, and publish them for consumption by downstream components. In this case study, we evaluate the performance of our rule-based event extraction system on a recently conducted ASIST experiment consisting of a simulated urban search and rescue mission in Minecraft. We compare the performance of our approach with that of a zero-shot neural classifier, and find that our approach outperforms the classifier for all event types, even when the classifier is used in an oracle setting where it knows how many events should be extracted from each utterance.

2020

pdf bib
MathAlign: Linking Formula Identifiers to their Contextual Natural Language Descriptions
Maria Alexeeva | Rebecca Sharp | Marco A. Valenzuela-Escárcega | Jennifer Kadowaki | Adarsh Pyarelal | Clayton Morrison
Proceedings of the Twelfth Language Resources and Evaluation Conference

Extending machine reading approaches to extract mathematical concepts and their descriptions is useful for a variety of tasks, ranging from mathematical information retrieval to increasing accessibility of scientific documents for the visually impaired. This entails segmenting mathematical formulae into identifiers and linking them to their natural language descriptions. We propose a rule-based approach for this task, which extracts LaTeX representations of formula identifiers and links them to their in-text descriptions, given only the original PDF and the location of the formula of interest. We also present a novel evaluation dataset for this task, as well as the tool used to create it.

2019

pdf bib
Eidos, INDRA, & Delphi: From Free Text to Executable Causal Models
Rebecca Sharp | Adarsh Pyarelal | Benjamin Gyori | Keith Alcock | Egoitz Laparra | Marco A. Valenzuela-Escárcega | Ajay Nagesh | Vikas Yadav | John Bachman | Zheng Tang | Heather Lent | Fan Luo | Mithun Paul | Steven Bethard | Kobus Barnard | Clayton Morrison | Mihai Surdeanu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

Building causal models of complicated phenomena such as food insecurity is currently a slow and labor-intensive manual process. In this paper, we introduce an approach that builds executable probabilistic models from raw, free text. The proposed approach is implemented through three systems: Eidos, INDRA, and Delphi. Eidos is an open-domain machine reading system designed to extract causal relations from natural language. It is rule-based, allowing for rapid domain transfer, customizability, and interpretability. INDRA aggregates multiple sources of causal information and performs assembly to create a coherent knowledge base and assess its reliability. This assembled knowledge serves as the starting point for modeling. Delphi is a modeling framework that assembles quantified causal fragments and their contexts into executable probabilistic models that respect the semantics of the original text, and can be used to support decision making.