Adithya Kulkarni


pdf bib
Zero-shot Approach to Overcome Perturbation Sensitivity of Prompts
Mohna Chakraborty | Adithya Kulkarni | Qi Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent studies have demonstrated that natural-language prompts can help to leverage the knowledge learned by pre-trained language models for the binary sentence-level sentiment classification task. Specifically, these methods utilize few-shot learning settings to fine-tune the sentiment classification model using manual or automatically generated prompts. However, the performance of these methods is sensitive to the perturbations of the utilized prompts. Furthermore, these methods depend on a few labeled instances for automatic prompt generation and prompt ranking. This study aims to find high-quality prompts for the given task in a zero-shot setting. Given a base prompt, our proposed approach automatically generates multiple prompts similar to the base prompt employing positional, reasoning, and paraphrasing techniques and then ranks the prompts using a novel metric. We empirically demonstrate that the top-ranked prompts are high-quality and significantly outperform the base prompt and the prompts generated using few-shot learning for the binary sentence-level sentiment classification task.


pdf bib
OptSLA: an Optimization-Based Approach for Sequential Label Aggregation
Nasim Sabetpour | Adithya Kulkarni | Qi Li
Findings of the Association for Computational Linguistics: EMNLP 2020

The need for the annotated training dataset on which data-hungry machine learning algorithms feed has increased dramatically with advanced acclaim of machine learning applications. To annotate the data, people with domain expertise are needed, but they are seldom available and expensive to hire. This has lead to the thriving of crowdsourcing platforms such as Amazon Mechanical Turk (AMT). However, the annotations provided by one worker cannot be used directly to train the model due to the lack of expertise. Existing literature in annotation aggregation focuses on binary and multi-choice problems. In contrast, little work has been done on complex tasks such as sequence labeling with imbalanced classes, a ubiquitous task in Natural Language Processing (NLP), and Bio-Informatics. We propose OptSLA, an Optimization-based Sequential Label Aggregation method, that jointly considers the characteristics of sequential labeling tasks, workers reliabilities, and advanced deep learning techniques to conquer the challenge. We evaluate our model on crowdsourced data for named entity recognition task. Our results show that the proposed OptSLA outperforms the state-of-the-art aggregation methods, and the results are easier to interpret.