Aditi Raghunathan


pdf bib
Robust Encodings: A Framework for Combating Adversarial Typos
Erik Jones | Robin Jia | Aditi Raghunathan | Percy Liang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Despite excellent performance on many tasks, NLP systems are easily fooled by small adversarial perturbations of inputs. Existing procedures to defend against such perturbations are either (i) heuristic in nature and susceptible to stronger attacks or (ii) provide guaranteed robustness to worst-case attacks, but are incompatible with state-of-the-art models like BERT. In this work, we introduce robust encodings (RobEn): a simple framework that confers guaranteed robustness, without making compromises on model architecture. The core component of RobEn is an encoding function, which maps sentences to a smaller, discrete space of encodings. Systems using these encodings as a bottleneck confer guaranteed robustness with standard training, and the same encodings can be used across multiple tasks. We identify two desiderata to construct robust encoding functions: perturbations of a sentence should map to a small set of encodings (stability), and models using encodings should still perform well (fidelity). We instantiate RobEn to defend against a large family of adversarial typos. Across six tasks from GLUE, our instantiation of RobEn paired with BERT achieves an average robust accuracy of 71.3% against all adversarial typos in the family considered, while previous work using a typo-corrector achieves only 35.3% accuracy against a simple greedy attack.


pdf bib
Certified Robustness to Adversarial Word Substitutions
Robin Jia | Aditi Raghunathan | Kerem Göksel | Percy Liang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

State-of-the-art NLP models can often be fooled by adversaries that apply seemingly innocuous label-preserving transformations (e.g., paraphrasing) to input text. The number of possible transformations scales exponentially with text length, so data augmentation cannot cover all transformations of an input. This paper considers one exponentially large family of label-preserving transformations, in which every word in the input can be replaced with a similar word. We train the first models that are provably robust to all word substitutions in this family. Our training procedure uses Interval Bound Propagation (IBP) to minimize an upper bound on the worst-case loss that any combination of word substitutions can induce. To evaluate models’ robustness to these transformations, we measure accuracy on adversarially chosen word substitutions applied to test examples. Our IBP-trained models attain 75% adversarial accuracy on both sentiment analysis on IMDB and natural language inference on SNLI; in comparison, on IMDB, models trained normally and ones trained with data augmentation achieve adversarial accuracy of only 12% and 41%, respectively.