Aditya Gupta


2022

pdf bib
TableFormer: Robust Transformer Modeling for Table-Text Encoding
Jingfeng Yang | Aditya Gupta | Shyam Upadhyay | Luheng He | Rahul Goel | Shachi Paul
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Understanding tables is an important aspect of natural language understanding. Existing models for table understanding require linearization of the table structure, where row or column order is encoded as an unwanted bias. Such spurious biases make the model vulnerable to row and column order perturbations. Additionally, prior work has not thoroughly modeled the table structures or table-text alignments, hindering the table-text understanding ability. In this work, we propose a robust and structurally aware table-text encoding architecture TableFormer, where tabular structural biases are incorporated completely through learnable attention biases. TableFormer is (1) strictly invariant to row and column orders, and, (2) could understand tables better due to its tabular inductive biases. Our evaluations showed that TableFormer outperforms strong baselines in all settings on SQA, WTQ and TabFact table reasoning datasets, and achieves state-of-the-art performance on SQA, especially when facing answer-invariant row and column order perturbations (6% improvement over the best baseline), because previous SOTA models’ performance drops by 4% - 6% when facing such perturbations while TableFormer is not affected.

pdf bib
Improving Top-K Decoding for Non-Autoregressive Semantic Parsing via Intent Conditioning
Geunseob Oh | Rahul Goel | Chris Hidey | Shachi Paul | Aditya Gupta | Pararth Shah | Rushin Shah
Proceedings of the 29th International Conference on Computational Linguistics

Semantic parsing (SP) is a core component of modern virtual assistants like Google Assistant and Amazon Alexa. While sequence-to-sequence based auto-regressive (AR) approaches are common for conversational SP, recent studies employ non-autoregressive (NAR) decoders and reduce inference latency while maintaining competitive parsing quality. However, a major drawback of NAR decoders is the difficulty of generating top-k (i.e., k-best) outputs with approaches such as beam search. To address this challenge, we propose a novel NAR semantic parser that introduces intent conditioning on the decoder. Inspired by the traditional intent and slot tagging parsers, we decouple the top-level intent prediction from the rest of a parse. As the top-level intent largely governs the syntax and semantics of a parse, the intent conditioning allows the model to better control beam search and improves the quality and diversity of top-k outputs. We introduce a hybrid teacher-forcing approach to avoid training and inference mismatch. We evaluate the proposed NAR on conversational SP datasets, TOP & TOPv2. Like the existing NAR models, we maintain the O(1) decoding time complexity while generating more diverse outputs and improving top-3 exact match (EM) by 2.4 points. In comparison with AR models, our model speeds up beam search inference by 6.7 times on CPU with competitive top-k EM.

2021

pdf bib
TIMEDIAL: Temporal Commonsense Reasoning in Dialog
Lianhui Qin | Aditya Gupta | Shyam Upadhyay | Luheng He | Yejin Choi | Manaal Faruqui
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Everyday conversations require understanding everyday events, which in turn, requires understanding temporal commonsense concepts interwoven with those events. Despite recent progress with massive pre-trained language models (LMs) such as T5 and GPT-3, their capability of temporal reasoning in dialogs remains largely under-explored. In this paper, we present the first study to investigate pre-trained LMs for their temporal reasoning capabilities in dialogs by introducing a new task and a crowd-sourced English challenge set, TimeDial. We formulate TimeDial as a multiple choice cloze task with over 1.1K carefully curated dialogs. Empirical results demonstrate that even the best performing models struggle on this task compared to humans, with 23 absolute points of gap in accuracy. Furthermore, our analysis reveals that the models fail to reason about dialog context correctly; instead, they rely on shallow cues based on existing temporal patterns in context, motivating future research for modeling temporal concepts in text and robust contextual reasoning about them. The dataset is publicly available at https://github.com/google-research-datasets/timedial.

pdf bib
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering
Aditya Gupta | Jiacheng Xu | Shyam Upadhyay | Diyi Yang | Manaal Faruqui
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
A Multi-modal Personality Prediction System
Chanchal Suman | Aditya Gupta | Sriparna Saha | Pushpak Bhattacharyya
Proceedings of the 17th International Conference on Natural Language Processing (ICON)

Automatic prediction of personality traits has many real-life applications, e.g., in forensics, recommender systems, personalized services etc.. In this work, we have proposed a solution framework for solving the problem of predicting the personality traits of a user from videos. Ambient, facial and the audio features are extracted from the video of the user. These features are used for the final output prediction. The visual and audio modalities are combined in two different ways: averaging of predictions obtained from the individual modalities, and concatenation of features in multi-modal setting. The dataset released in Chalearn-16 is used for evaluating the performance of the system. Experimental results illustrate that it is possible to obtain better performance with a hand full of images, rather than using all the images present in the video

2019

pdf bib
Effective Use of Transformer Networks for Entity Tracking
Aditya Gupta | Greg Durrett
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Tracking entities in procedural language requires understanding the transformations arising from actions on entities as well as those entities’ interactions. While self-attention-based pre-trained language encoders like GPT and BERT have been successfully applied across a range of natural language understanding tasks, their ability to handle the nuances of procedural texts is still unknown. In this paper, we explore the use of pre-trained transformer networks for entity tracking tasks in procedural text. First, we test standard lightweight approaches for prediction with pre-trained transformers, and find that these approaches underperforms even simple baselines. We show that much stronger results can be attained by restructuring the input to guide the model to focus on a particular entity. Second, we assess the degree to which the transformer networks capture the process dynamics, investigating such factors as merged entities and oblique entity references. On two different tasks, ingredient detection in recipes and QA over scientific processes, we achieve state-of-the-art results, but our models still largely attend to shallow context clues and do not form complex representations of intermediate process state.

pdf bib
Tracking Discrete and Continuous Entity State for Process Understanding
Aditya Gupta | Greg Durrett
Proceedings of the Third Workshop on Structured Prediction for NLP

Procedural text, which describes entities and their interactions as they undergo some process, depicts entities in a uniquely nuanced way. First, each entity may have some observable discrete attributes, such as its state or location; modeling these involves imposing global structure and enforcing consistency. Second, an entity may have properties which are not made explicit but can be effectively induced and tracked by neural networks. In this paper, we propose a structured neural architecture that reflects this dual nature of entity evolution. The model tracks each entity recurrently, updating its hidden continuous representation at each step to contain relevant state information. The global discrete state structure is explicitly modelled with a neural CRF over the changing hidden representation of the entity. This CRF can explicitly capture constraints on entity states over time, enforcing that, for example, an entity cannot move to a location after it is destroyed. We evaluate the performance of our proposed model on QA tasks over process paragraphs in the ProPara dataset and find that our model achieves state-of-the-art results.