Aditya K Surikuchi


2024

pdf bib
Not (yet) the whole story: Evaluating Visual Storytelling Requires More than Measuring Coherence, Grounding, and Repetition
Aditya K Surikuchi | Raquel Fernández | Sandro Pezzelle
Findings of the Association for Computational Linguistics: EMNLP 2024

Visual storytelling consists in generating a natural language story given a temporally ordered sequence of images. This task is not only challenging for models, but also very difficult to evaluate with automatic metrics since there is no consensus about what makes a story ‘good’. In this paper, we introduce a novel method that measures story quality in terms of human likeness regarding three key aspects highlighted in previous work: visual grounding, coherence, and repetitiveness. We then use this method to evaluate the stories generated by several models, showing that the foundation model LLaVA obtains the best result, but only slightly so compared to TAPM, a 50-times smaller visual storytelling model. Upgrading the visual and language components of TAPM results in a model that yields competitive performance with a relatively low number of parameters. Finally, we carry out a human evaluation study, whose results suggest that a ‘good’ story may require more than a human-like level of visual grounding, coherence, and repetition.

2023

pdf bib
GROOViST: A Metric for Grounding Objects in Visual Storytelling
Aditya K Surikuchi | Sandro Pezzelle | Raquel Fernández
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

A proper evaluation of stories generated for a sequence of images—the task commonly referred to as visual storytelling—must consider multiple aspects, such as coherence, grammatical correctness, and visual grounding. In this work, we focus on evaluating the degree of grounding, that is, the extent to which a story is about the entities shown in the images. We analyze current metrics, both designed for this purpose and for general vision-text alignment. Given their observed shortcomings, we propose a novel evaluation tool, GROOViST, that accounts for cross-modal dependencies, temporal misalignments (the fact that the order in which entities appear in the story and the image sequence may not match), and human intuitions on visual grounding. An additional advantage of GROOViST is its modular design, where the contribution of each component can be assessed and interpreted individually.