Adrien Durand


2011

pdf bib
Une approche faiblement supervisée pour l’extraction de relations à large échelle (A weakly supervised approach to large scale relation extraction)
Ludovic Jean-Louis | Romaric Besançon | Olivier Ferret | Adrien Durand
Actes de la 18e conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

Les systèmes d’extraction d’information traditionnels se focalisent sur un domaine spécifique et un nombre limité de relations. Les travaux récents dans ce domaine ont cependant vu émerger la problématique des systèmes d’extraction d’information à large échelle. À l’instar des systèmes de question-réponse en domaine ouvert, ces systèmes se caractérisent à la fois par le traitement d’un grand nombre de relations et par une absence de restriction quant aux domaines abordés. Dans cet article, nous présentons un système d’extraction d’information à large échelle fondé sur un apprentissage faiblement supervisé de patrons d’extraction de relations. Cet apprentissage repose sur la donnée de couples d’entités en relation dont la projection dans un corpus de référence permet de constituer la base d’exemples de relations support de l’induction des patrons d’extraction. Nous présentons également les résultats de l’application de cette approche dans le cadre d’évaluation défini par la tâche KBP de l’évaluation TAC 2010.