Agostina Calabrese


pdf bib
Explainable Abuse Detection as Intent Classification and Slot Filling
Agostina Calabrese | Björn Ross | Mirella Lapata
Transactions of the Association for Computational Linguistics, Volume 10

To proactively offer social media users a safe online experience, there is a need for systems that can detect harmful posts and promptly alert platform moderators. In order to guarantee the enforcement of a consistent policy, moderators are provided with detailed guidelines. In contrast, most state-of-the-art models learn what abuse is from labeled examples and as a result base their predictions on spurious cues, such as the presence of group identifiers, which can be unreliable. In this work we introduce the concept of policy-aware abuse detection, abandoning the unrealistic expectation that systems can reliably learn which phenomena constitute abuse from inspecting the data alone. We propose a machine-friendly representation of the policy that moderators wish to enforce, by breaking it down into a collection of intents and slots. We collect and annotate a dataset of 3,535 English posts with such slots, and show how architectures for intent classification and slot filling can be used for abuse detection, while providing a rationale for model decisions.1


pdf bib
Fatality Killed the Cat or: BabelPic, a Multimodal Dataset for Non-Concrete Concepts
Agostina Calabrese | Michele Bevilacqua | Roberto Navigli
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Thanks to the wealth of high-quality annotated images available in popular repositories such as ImageNet, multimodal language-vision research is in full bloom. However, events, feelings and many other kinds of concepts which can be visually grounded are not well represented in current datasets. Nevertheless, we would expect a wide-coverage language understanding system to be able to classify images depicting recess and remorse, not just cats, dogs and bridges. We fill this gap by presenting BabelPic, a hand-labeled dataset built by cleaning the image-synset association found within the BabelNet Lexical Knowledge Base (LKB). BabelPic explicitly targets non-concrete concepts, thus providing refreshing new data for the community. We also show that pre-trained language-vision systems can be used to further expand the resource by exploiting natural language knowledge available in the LKB. BabelPic is available for download at