Ahmad Dawar Hakimi


2021

pdf bib
On Classifying whether Two Texts are on the Same Side of an Argument
Erik Körner | Gregor Wiedemann | Ahmad Dawar Hakimi | Gerhard Heyer | Martin Potthast
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

To ease the difficulty of argument stance classification, the task of same side stance classification (S3C) has been proposed. In contrast to actual stance classification, which requires a substantial amount of domain knowledge to identify whether an argument is in favor or against a certain issue, it is argued that, for S3C, only argument similarity within stances needs to be learned to successfully solve the task. We evaluate several transformer-based approaches on the dataset of the recent S3C shared task, followed by an in-depth evaluation and error analysis of our model and the task’s hypothesis. We show that, although we achieve state-of-the-art results, our model fails to generalize both within as well as across topics and domains when adjusting the sampling strategy of the training and test set to a more adversarial scenario. Our evaluation shows that current state-of-the-art approaches cannot determine same side stance by considering only domain-independent linguistic similarity features, but appear to require domain knowledge and semantic inference, too.

pdf bib
Casting the Same Sentiment Classification Problem
Erik Körner | Ahmad Dawar Hakimi | Gerhard Heyer | Martin Potthast
Findings of the Association for Computational Linguistics: EMNLP 2021

We introduce and study a problem variant of sentiment analysis, namely the “same sentiment classification problem”, where, given a pair of texts, the task is to determine if they have the same sentiment, disregarding the actual sentiment polarity. Among other things, our goal is to enable a more topic-agnostic sentiment classification. We study the problem using the Yelp business review dataset, demonstrating how sentiment data needs to be prepared for this task, and then carry out sequence pair classification using the BERT language model. In a series of experiments, we achieve an accuracy above 83% for category subsets across topics, and 89% on average.