Ahmed Abbasi


2022

pdf bib
Benchmarking Intersectional Biases in NLP
John Lalor | Yi Yang | Kendall Smith | Nicole Forsgren | Ahmed Abbasi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

There has been a recent wave of work assessing the fairness of machine learning models in general, and more specifically, on natural language processing (NLP) models built using machine learning techniques. While much work has highlighted biases embedded in state-of-the-art language models, and more recent efforts have focused on how to debias, research assessing the fairness and performance of biased/debiased models on downstream prediction tasks has been limited. Moreover, most prior work has emphasized bias along a single dimension such as gender or race. In this work, we benchmark multiple NLP models with regards to their fairness and predictive performance across a variety of NLP tasks. In particular, we assess intersectional bias - fairness across multiple demographic dimensions. The results show that while current debiasing strategies fare well in terms of the fairness-accuracy trade-off (generally preserving predictive power in debiased models), they are unable to effectively alleviate bias in downstream tasks. Furthermore, this bias is often amplified across dimensions (i.e., intersections). We conclude by highlighting possible causes and making recommendations for future NLP debiasing research.

pdf bib
Auto-Debias: Debiasing Masked Language Models with Automated Biased Prompts
Yue Guo | Yi Yang | Ahmed Abbasi
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Human-like biases and undesired social stereotypes exist in large pretrained language models. Given the wide adoption of these models in real-world applications, mitigating such biases has become an emerging and important task. In this paper, we propose an automatic method to mitigate the biases in pretrained language models. Different from previous debiasing work that uses external corpora to fine-tune the pretrained models, we instead directly probe the biases encoded in pretrained models through prompts. Specifically, we propose a variant of the beam search method to automatically search for biased prompts such that the cloze-style completions are the most different with respect to different demographic groups. Given the identified biased prompts, we then propose a distribution alignment loss to mitigate the biases. Experiment results on standard datasets and metrics show that our proposed Auto-Debias approach can significantly reduce biases, including gender and racial bias, in pretrained language models such as BERT, RoBERTa and ALBERT. Moreover, the improvement in fairness does not decrease the language models’ understanding abilities, as shown using the GLUE benchmark.

2021

pdf bib
Constructing a Psychometric Testbed for Fair Natural Language Processing
Ahmed Abbasi | David Dobolyi | John P. Lalor | Richard G. Netemeyer | Kendall Smith | Yi Yang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Psychometric measures of ability, attitudes, perceptions, and beliefs are crucial for understanding user behavior in various contexts including health, security, e-commerce, and finance. Traditionally, psychometric dimensions have been measured and collected using survey-based methods. Inferring such constructs from user-generated text could allow timely, unobtrusive collection and analysis. In this paper we describe our efforts to construct a corpus for psychometric natural language processing (NLP) related to important dimensions such as trust, anxiety, numeracy, and literacy, in the health domain. We discuss our multi-step process to align user text with their survey-based response items and provide an overview of the resulting testbed which encompasses survey-based psychometric measures and accompanying user-generated text from 8,502 respondents. Our testbed also encompasses self-reported demographic information, including race, sex, age, income, and education - thereby affording opportunities for measuring bias and benchmarking fairness of text classification methods. We report preliminary results on use of the text to predict/categorize users’ survey response labels - and on the fairness of these models. We also discuss the important implications of our work and resulting testbed for future NLP research on psychometrics and fairness.

2014

pdf bib
Benchmarking Twitter Sentiment Analysis Tools
Ahmed Abbasi | Ammar Hassan | Milan Dhar
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

Twitter has become one of the quintessential social media platforms for user-generated content. Researchers and industry practitioners are increasingly interested in Twitter sentiments. Consequently, an array of commercial and freely available Twitter sentiment analysis tools have emerged, though it remains unclear how well these tools really work. This study presents the findings of a detailed benchmark analysis of Twitter sentiment analysis tools, incorporating 20 tools applied to 5 different test beds. In addition to presenting detailed performance evaluation results, a thorough error analysis is used to highlight the most prevalent challenges facing Twitter sentiment analysis tools. The results have important implications for various stakeholder groups, including social media analytics researchers, NLP developers, and industry managers and practitioners using social media sentiments as input for decision-making.