Ahmed Baruwa


2022

pdf bib
Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets
Julia Kreutzer | Isaac Caswell | Lisa Wang | Ahsan Wahab | Daan van Esch | Nasanbayar Ulzii-Orshikh | Allahsera Tapo | Nishant Subramani | Artem Sokolov | Claytone Sikasote | Monang Setyawan | Supheakmungkol Sarin | Sokhar Samb | Benoît Sagot | Clara Rivera | Annette Rios | Isabel Papadimitriou | Salomey Osei | Pedro Ortiz Suarez | Iroro Orife | Kelechi Ogueji | Andre Niyongabo Rubungo | Toan Q. Nguyen | Mathias Müller | André Müller | Shamsuddeen Hassan Muhammad | Nanda Muhammad | Ayanda Mnyakeni | Jamshidbek Mirzakhalov | Tapiwanashe Matangira | Colin Leong | Nze Lawson | Sneha Kudugunta | Yacine Jernite | Mathias Jenny | Orhan Firat | Bonaventure F. P. Dossou | Sakhile Dlamini | Nisansa de Silva | Sakine Çabuk Ballı | Stella Biderman | Alessia Battisti | Ahmed Baruwa | Ankur Bapna | Pallavi Baljekar | Israel Abebe Azime | Ayodele Awokoya | Duygu Ataman | Orevaoghene Ahia | Oghenefego Ahia | Sweta Agrawal | Mofetoluwa Adeyemi
Transactions of the Association for Computational Linguistics, Volume 10

With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, Web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases.