Ahmed Elbakry


2023

pdf bib
Rosetta Stone at KSAA-RD Shared Task: A Hop From Language Modeling To Word–Definition Alignment
Ahmed Elbakry | Mohamed Gabr | Muhammad ElNokrashy | Badr AlKhamissi
Proceedings of ArabicNLP 2023

A Reverse Dictionary is a tool enabling users to discover a word based on its provided definition, meaning, or description. Such a technique proves valuable in various scenarios, aiding language learners who possess a description of a word without its identity, and benefiting writers seeking precise terminology. These scenarios often encapsulate what is referred to as the “Tip-of-the-Tongue” (TOT) phenomena. In this work, we present our winning solution for the Arabic Reverse Dictionary shared task. This task focuses on deriving a vector representation of an Arabic word from its accompanying description. The shared task encompasses two distinct subtasks: the first involves an Arabic definition as input, while the second employs an English definition. For the first subtask, our approach relies on an ensemble of finetuned Arabic BERT-based models, predicting the word embedding for a given definition. The final representation is obtained through averaging the output embeddings from each model within the ensemble. In contrast, the most effective solution for the second subtask involves translating the English test definitions into Arabic and applying them to the finetuned models originally trained for the first subtask. This straightforward method achieves the highest score across both subtasks.

2022

pdf bib
The Shared Task on Gender Rewriting
Bashar Alhafni | Nizar Habash | Houda Bouamor | Ossama Obeid | Sultan Alrowili | Daliyah AlZeer | Kawla Mohmad Shnqiti | Ahmed Elbakry | Muhammad ElNokrashy | Mohamed Gabr | Abderrahmane Issam | Abdelrahim Qaddoumi | Vijay Shanker | Mahmoud Zyate
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

In this paper, we present the results and findings of the Shared Task on Gender Rewriting, which was organized as part of the Seventh Arabic Natural Language Processing Workshop. The task of gender rewriting refers to generating alternatives of a given sentence to match different target user gender contexts (e.g., a female speaker with a male listener, a male speaker with a male listener, etc.). This requires changing the grammatical gender (masculine or feminine) of certain words referring to the users. In this task, we focus on Arabic, a gender-marking morphologically rich language. A total of five teams from four countries participated in the shared task.