Ahmed Hamdi


2023

pdf bib
Injection de connaissances temporelles dans la reconnaissance d’entités nommées historiques
Carlos-Emiliano González-Gallardo | Emanuela Boros | Edward Giamphy | Ahmed Hamdi | Jose Moreno | Antoine Doucet
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 4 : articles déjà soumis ou acceptés en conférence internationale

Dans cet article, nous abordons la reconnaissance d’entités nommées dans des documents historiques multilingues. Cette tâche présente des multiples défis tels que les erreurs générées suite à la numérisa- tion et la reconnaissance optique des caractères de ces documents. En outre, les documents historiques posent un autre défi puisque leurs collections sont distribuées sur une période de temps assez longue et suivent éventuellement plusieurs conventions orthographiques qui évoluent au fil du temps. Nous explorons, dans ce travail, l’idée d’injecter des connaissance temporelles à l’aide de graphes pour une reconnaissance d’entités nommées plus performante. Plus précisément, nous récupérons des contextes supplémentaires, sémantiquement pertinents, en explorant les informations temporelles fournies par les collections historiques et nous les incluons en tant que représentations mises en commun dans un modèle NER basé sur un transformeur. Nous expérimentons avec deux collections récentes en anglais, français et allemand, composées de journaux historiques (19C-20C) et de commentaires classiques (19C). Les résultats montrent l’efficacité de l’injection de connaissances temporelles dans des ensembles de données, des langues et des types d’entités différents.

pdf bib
Oui mais... ChatGPT peut-il identifier des entités dans des documents historiques ?
Carlos-Emiliano González-Gallardo | Emanuela Boros | Nancy Girdhar | Ahmed Hamdi | Jose Moreno | Antoine Doucet
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 4 : articles déjà soumis ou acceptés en conférence internationale

Les modèles de langage de grande taille (LLM) sont exploités depuis plusieurs années maintenant, obtenant des performances de pointe dans la reconnaissance d’entités à partir de documents modernes. Depuis quelques mois, l’agent conversationnel ChatGPT a suscité beaucoup d’intérêt auprès de la communauté scientifique et du grand public en raison de sa capacité à générer des réponses plausibles. Dans cet article, nous explorons cette compétence à travers la tâche de reconnaissance et de classification d’entités nommées (NERC) dans des sources primaires (des journaux historiques et des commentaires classiques) d’une manière zero-shot et en la comparant avec les systèmes de pointe basés sur des modèles de langage. Nos résultats indiquent plusieurs lacunes dans l’identification des entités dans le texte historique, qui concernant la cohérence des guidelines d’annotation des entités, la complexité des entités et du changement de code et la spécificité du prompt. De plus, comme prévu, l’inaccessibilité des archives historiques a également un impact sur les performances de ChatGPT.

2020

pdf bib
Alleviating Digitization Errors in Named Entity Recognition for Historical Documents
Emanuela Boros | Ahmed Hamdi | Elvys Linhares Pontes | Luis Adrián Cabrera-Diego | Jose G. Moreno | Nicolas Sidere | Antoine Doucet
Proceedings of the 24th Conference on Computational Natural Language Learning

This paper tackles the task of named entity recognition (NER) applied to digitized historical texts obtained from processing digital images of newspapers using optical character recognition (OCR) techniques. We argue that the main challenge for this task is that the OCR process leads to misspellings and linguistic errors in the output text. Moreover, historical variations can be present in aged documents, which can impact the performance of the NER process. We conduct a comparative evaluation on two historical datasets in German and French against previous state-of-the-art models, and we propose a model based on a hierarchical stack of Transformers to approach the NER task for historical data. Our findings show that the proposed model clearly improves the results on both historical datasets, and does not degrade the results for modern datasets.

2015

pdf bib
POS-tagging of Tunisian Dialect Using Standard Arabic Resources and Tools
Ahmed Hamdi | Alexis Nasr | Nizar Habash | Núria Gala
Proceedings of the Second Workshop on Arabic Natural Language Processing

2014

pdf bib
Automatically building a Tunisian Lexicon for Deverbal Nouns
Ahmed Hamdi | Núria Gala | Alexis Nasr
Proceedings of the First Workshop on Applying NLP Tools to Similar Languages, Varieties and Dialects

2013

pdf bib
Translating verbs between MSA and arabic dialects through deep morphological analysis (Un système de traduction de verbes entre arabe standard et arabe dialectal par analyse morphologique profonde) [in French]
Ahmed Hamdi | Rahma Boujelbane | Nizar Habash | Alexis Nasr
Proceedings of TALN 2013 (Volume 1: Long Papers)

pdf bib
The Effects of Factorizing Root and Pattern Mapping in Bidirectional Tunisian - Standard Arabic Machine Translation
Ahmed Hamdi | Rahma Boujelbane | Nizar Habash | Alexis Nasr
Proceedings of Machine Translation Summit XIV: Papers

2012

pdf bib
Apport de la diacritisation de l’analyse morphosyntaxique de l’arabe (Apport of Diacritization in Arabic Morpho-Syntactic Analysis) [in French]
Ahmed Hamdi
Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 3: RECITAL