Ajay Divakaran


pdf bib
Comprehension Based Question Answering using Bloom’s Taxonomy
Pritish Sahu | Michael Cogswell | Ajay Divakaran | Sara Rutherford-Quach
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

Current pre-trained language models have lots of knowledge, but a more limited ability to use that knowledge. Bloom’s Taxonomy helps educators teach children how to use knowledge by categorizing comprehension skills, so we use it to analyze and improve the comprehension skills of large pre-trained language models. Our experiments focus on zero-shot question answering, using the taxonomy to provide proximal context that helps the model answer questions by being relevant to those questions. We show targeting context in this manner improves performance across 4 popular common sense question answer datasets.


pdf bib
Integrating Text and Image: Determining Multimodal Document Intent in Instagram Posts
Julia Kruk | Jonah Lubin | Karan Sikka | Xiao Lin | Dan Jurafsky | Ajay Divakaran
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Computing author intent from multimodal data like Instagram posts requires modeling a complex relationship between text and image. For example, a caption might evoke an ironic contrast with the image, so neither caption nor image is a mere transcript of the other. Instead they combine—via what has been called meaning multiplication (Bateman et al.)- to create a new meaning that has a more complex relation to the literal meanings of text and image. Here we introduce a multimodal dataset of 1299 Instagram posts labeled for three orthogonal taxonomies: the authorial intent behind the image-caption pair, the contextual relationship between the literal meanings of the image and caption, and the semiotic relationship between the signified meanings of the image and caption. We build a baseline deep multimodal classifier to validate the taxonomy, showing that employing both text and image improves intent detection by 9.6 compared to using only the image modality, demonstrating the commonality of non-intersective meaning multiplication. The gain with multimodality is greatest when the image and caption diverge semiotically. Our dataset offers a new resource for the study of the rich meanings that result from pairing text and image.

pdf bib
Sunny and Dark Outside?! Improving Answer Consistency in VQA through Entailed Question Generation
Arijit Ray | Karan Sikka | Ajay Divakaran | Stefan Lee | Giedrius Burachas
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

While models for Visual Question Answering (VQA) have steadily improved over the years, interacting with one quickly reveals that these models lack consistency. For instance, if a model answers “red” to “What color is the balloon?”, it might answer “no” if asked, “Is the balloon red?”. These responses violate simple notions of entailment and raise questions about how effectively VQA models ground language. In this work, we introduce a dataset, ConVQA, and metrics that enable quantitative evaluation of consistency in VQA. For a given observable fact in an image (e.g. the balloon’s color), we generate a set of logically consistent question-answer (QA) pairs (e.g. Is the balloon red?) and also collect a human-annotated set of common-sense based consistent QA pairs (e.g. Is the balloon the same color as tomato sauce?). Further, we propose a consistency-improving data augmentation module, a Consistency Teacher Module (CTM). CTM automatically generates entailed (or similar-intent) questions for a source QA pair and fine-tunes the VQA model if the VQA’s answer to the entailed question is consistent with the source QA pair. We demonstrate that our CTM-based training improves the consistency of VQA models on the Con-VQA datasets and is a strong baseline for further research.