Akanksha Karotia


2024

pdf bib
BioLay_AK_SS at BioLaySumm: Domain Adaptation by Two-Stage Fine-Tuning of Large Language Models used for Biomedical Lay Summary Generation
Akanksha Karotia | Seba Susan
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing

Lay summarization is essential but challenging, as it simplifies scientific information for non-experts and keeps them updated with the latest scientific knowledge. In our participation in the Shared Task: Lay Summarization of Biomedical Research Articles @ BioNLP Workshop (Goldsack et al., 2024), ACL 2024, we conducted a comprehensive evaluation on abstractive summarization of biomedical literature using Large Language Models (LLMs) and assessed the performance using ten metrics across three categories: relevance, readability, and factuality, using eLife and PLOS datasets provided by the organizers. We developed a two-stage framework for lay summarization of biomedical scientific articles. In the first stage, we generated summaries using BART and PEGASUS LLMs by fine-tuning them on the given datasets. In the second stage, we combined the generated summaries and input them to BioBART, and then fine-tuned it on the same datasets. Our findings show that combining general and domain-specific LLMs enhances performance.
Search
Co-authors
Venues