Akari Asai


pdf bib
XOR QA: Cross-lingual Open-Retrieval Question Answering
Akari Asai | Jungo Kasai | Jonathan Clark | Kenton Lee | Eunsol Choi | Hannaneh Hajishirzi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Multilingual question answering tasks typically assume that answers exist in the same language as the question. Yet in practice, many languages face both information scarcity—where languages have few reference articles—and information asymmetry—where questions reference concepts from other cultures. This work extends open-retrieval question answering to a cross-lingual setting enabling questions from one language to be answered via answer content from another language. We construct a large-scale dataset built on 40K information-seeking questions across 7 diverse non-English languages that TyDi QA could not find same-language answers for. Based on this dataset, we introduce a task framework, called Cross-lingual Open-Retrieval Question Answering (XOR QA), that consists of three new tasks involving cross-lingual document retrieval from multilingual and English resources. We establish baselines with state-of-the-art machine translation systems and cross-lingual pretrained models. Experimental results suggest that XOR QA is a challenging task that will facilitate the development of novel techniques for multilingual question answering. Our data and code are available at https://nlp.cs.washington.edu/xorqa/.

pdf bib
Challenges in Information-Seeking QA: Unanswerable Questions and Paragraph Retrieval
Akari Asai | Eunsol Choi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent pretrained language models “solved” many reading comprehension benchmarks, where questions are written with access to the evidence document. However, datasets containing information-seeking queries where evidence documents are provided after the queries are written independently remain challenging. We analyze why answering information-seeking queries is more challenging and where their prevalent unanswerabilities arise, on Natural Questions and TyDi QA. Our controlled experiments suggest two headrooms – paragraph selection and answerability prediction, i.e. whether the paired evidence document contains the answer to the query or not. When provided with a gold paragraph and knowing when to abstain from answering, existing models easily outperform a human annotator. However, predicting answerability itself remains challenging. We manually annotate 800 unanswerable examples across six languages on what makes them challenging to answer. With this new data, we conduct per-category answerability prediction, revealing issues in the current dataset collection as well as task formulation. Together, our study points to avenues for future research in information-seeking question answering, both for dataset creation and model development. Our code and annotated data is publicly available at https://github.com/AkariAsai/unanswerable_qa.

pdf bib
Efficient Passage Retrieval with Hashing for Open-domain Question Answering
Ikuya Yamada | Akari Asai | Hannaneh Hajishirzi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Most state-of-the-art open-domain question answering systems use a neural retrieval model to encode passages into continuous vectors and extract them from a knowledge source. However, such retrieval models often require large memory to run because of the massive size of their passage index. In this paper, we introduce Binary Passage Retriever (BPR), a memory-efficient neural retrieval model that integrates a learning-to-hash technique into the state-of-the-art Dense Passage Retriever (DPR) to represent the passage index using compact binary codes rather than continuous vectors. BPR is trained with a multi-task objective over two tasks: efficient candidate generation based on binary codes and accurate reranking based on continuous vectors. Compared with DPR, BPR substantially reduces the memory cost from 65GB to 2GB without a loss of accuracy on two standard open-domain question answering benchmarks: Natural Questions and TriviaQA. Our code and trained models are available at https://github.com/studio-ousia/bpr.


pdf bib
Logic-Guided Data Augmentation and Regularization for Consistent Question Answering
Akari Asai | Hannaneh Hajishirzi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Many natural language questions require qualitative, quantitative or logical comparisons between two entities or events. This paper addresses the problem of improving the accuracy and consistency of responses to comparison questions by integrating logic rules and neural models. Our method leverages logical and linguistic knowledge to augment labeled training data and then uses a consistency-based regularizer to train the model. Improving the global consistency of predictions, our approach achieves large improvements over previous methods in a variety of question answering (QA) tasks, including multiple-choice qualitative reasoning, cause-effect reasoning, and extractive machine reading comprehension. In particular, our method significantly improves the performance of RoBERTa-based models by 1-5% across datasets. We advance state of the art by around 5-8% on WIQA and QuaRel and reduce consistency violations by 58% on HotpotQA. We further demonstrate that our approach can learn effectively from limited data.

pdf bib
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention
Ikuya Yamada | Akari Asai | Hiroyuki Shindo | Hideaki Takeda | Yuji Matsumoto
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Entity representations are useful in natural language tasks involving entities. In this paper, we propose new pretrained contextualized representations of words and entities based on the bidirectional transformer. The proposed model treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Our model is trained using a new pretraining task based on the masked language model of BERT. The task involves predicting randomly masked words and entities in a large entity-annotated corpus retrieved from Wikipedia. We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. The proposed model achieves impressive empirical performance on a wide range of entity-related tasks. In particular, it obtains state-of-the-art results on five well-known datasets: Open Entity (entity typing), TACRED (relation classification), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), and SQuAD 1.1 (extractive question answering). Our source code and pretrained representations are available at https://github.com/studio-ousia/luke.

pdf bib
Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from Wikipedia
Ikuya Yamada | Akari Asai | Jin Sakuma | Hiroyuki Shindo | Hideaki Takeda | Yoshiyasu Takefuji | Yuji Matsumoto
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The embeddings of entities in a large knowledge base (e.g., Wikipedia) are highly beneficial for solving various natural language tasks that involve real world knowledge. In this paper, we present Wikipedia2Vec, a Python-based open-source tool for learning the embeddings of words and entities from Wikipedia. The proposed tool enables users to learn the embeddings efficiently by issuing a single command with a Wikipedia dump file as an argument. We also introduce a web-based demonstration of our tool that allows users to visualize and explore the learned embeddings. In our experiments, our tool achieved a state-of-the-art result on the KORE entity relatedness dataset, and competitive results on various standard benchmark datasets. Furthermore, our tool has been used as a key component in various recent studies. We publicize the source code, demonstration, and the pretrained embeddings for 12 languages at https://wikipedia2vec.github.io/.


pdf bib
HappyDB: A Corpus of 100,000 Crowdsourced Happy Moments
Akari Asai | Sara Evensen | Behzad Golshan | Alon Halevy | Vivian Li | Andrei Lopatenko | Daniela Stepanov | Yoshihiko Suhara | Wang-Chiew Tan | Yinzhan Xu
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)