Akhil Arora


pdf bib
Strong Heuristics for Named Entity Linking
Marko Čuljak | Andreas Spitz | Robert West | Akhil Arora
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop

Named entity linking (NEL) in news is a challenging endeavour due to the frequency of unseen and emerging entities, which necessitates the use of unsupervised or zero-shot methods. However, such methods tend to come with caveats, such as no integration of suitable knowledge bases (like Wikidata) for emerging entities, a lack of scalability, and poor interpretability. Here, we consider person disambiguation in Quotebank, a massive corpus of speaker-attributed quotations from the news, and investigate the suitability of intuitive, lightweight, and scalable heuristics for NEL in web-scale corpora. Our best performing heuristic disambiguates 94% and 63% of the mentions on Quotebank and the AIDA-CoNLL benchmark, respectively. Additionally, the proposed heuristics compare favourably to the state-of-the-art unsupervised and zero-shot methods, Eigenthemes and mGENRE, respectively, thereby serving as strong baselines for unsupervised and zero-shot entity linking.

pdf bib
Efficient Entity Candidate Generation for Low-Resource Languages
Alberto Garcia-Duran | Akhil Arora | Robert West
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Candidate generation is a crucial module in entity linking. It also plays a key role in multiple NLP tasks that have been proven to beneficially leverage knowledge bases. Nevertheless, it has often been overlooked in the monolingual English entity linking literature, as naïve approaches obtain very good performance. Unfortunately, the existing approaches for English cannot be successfully transferred to poorly resourced languages. This paper constitutes an in-depth analysis of the candidate generation problem in the context of cross-lingual entity linking with a focus on low-resource languages. Among other contributions, we point out limitations in the evaluation conducted in previous works. We introduce a characterization of queries into types based on their difficulty, which improves the interpretability of the performance of different methods. We also propose a light-weight and simple solution based on the construction of indexes whose design is motivated by more complex transfer learning based neural approaches. A thorough empirical analysis on 9 real-world datasets under 2 evaluation settings shows that our simple solution outperforms the state-of-the-art approach in terms of both quality and efficiency for almost all datasets and query types.


pdf bib
Low-Rank Subspaces for Unsupervised Entity Linking
Akhil Arora | Alberto Garcia-Duran | Robert West
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Entity linking is an important problem with many applications. Most previous solutions were designed for settings where annotated training data is available, which is, however, not the case in numerous domains. We propose a light-weight and scalable entity linking method, Eigenthemes, that relies solely on the availability of entity names and a referent knowledge base. Eigenthemes exploits the fact that the entities that are truly mentioned in a document (the “gold entities”) tend to form a semantically dense subset of the set of all candidate entities in the document. Geometrically speaking, when representing entities as vectors via some given embedding, the gold entities tend to lie in a low-rank subspace of the full embedding space. Eigenthemes identifies this subspace using the singular value decomposition and scores candidate entities according to their proximity to the subspace. On the empirical front, we introduce multiple strong baselines that compare favorably to (and sometimes even outperform) the existing state of the art. Extensive experiments on benchmark datasets from a variety of real-world domains showcase the effectiveness of our approach.