Akhilesh Kakolu Ramarao

Also published as: Akhilesh Kakolu Ramarao


2024

pdf bib
KlarTextCoders at StaGE: Automatic Statement Annotations for German Easy Language
Akhilesh Kakolu Ramarao | Wiebke Petersen | Anna Sophia Stein | Emma Stein | Hanxin Xia
Proceedings of GermEval 2024 Shared Task on Statement Segmentation in German Easy Language (StaGE)

2023

pdf bib
Linear Discriminative Learning: a competitive non-neural baseline for morphological inflection
Cheonkam Jeong | Dominic Schmitz | Akhilesh Kakolu Ramarao | Anna Stein | Kevin Tang
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents our submission to the SIGMORPHON 2023 task 2 of Cognitively Plausible Morphophonological Generalization in Korean. We implemented both Linear Discriminative Learning and Transformer models and found that the Linear Discriminative Learning model trained on a combination of corpus and experimental data showed the best performance with the overall accuracy of around 83%. We found that the best model must be trained on both corpus data and the experimental data of one particular participant. Our examination of speaker-variability and speaker-specific information did not explain why a particular participant combined well with the corpus data. We recommend Linear Discriminative Learning models as a future non-neural baseline system, owning to its training speed, accuracy, model interpretability and cognitive plausibility. In order to improve the model performance, we suggest using bigger data and/or performing data augmentation and incorporating speaker- and item-specifics considerably.

2022

pdf bib
HeiMorph at SIGMORPHON 2022 Shared Task on Morphological Acquisition Trajectories
Akhilesh Kakolu Ramarao | Yulia Zinova | Kevin Tang | Ruben van de Vijver
Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents the submission by the HeiMorph team to the SIGMORPHON 2022 task 2 of Morphological Acquisition Trajectories. Across all experimental conditions, we have found no evidence for the so-called Ushaped development trajectory. Our submitted systems achieve an average test accuracies of 55.5% on Arabic, 67% on German and 73.38% on English. We found that, bigram hallucination provides better inferences only for English and Arabic and only when the number of hallucinations remains low.