Akshat Gupta


2023

pdf bib
Unsupervised Domain Adaptation using Lexical Transformations and Label Injection for Twitter Data
Akshat Gupta | Xiaomo Liu | Sameena Shah
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

Domain adaptation is an important and widely studied problem in natural language processing. A large body of literature tries to solve this problem by adapting models trained on the source domain to the target domain. In this paper, we instead solve this problem from a dataset perspective. We modify the source domain dataset with simple lexical transformations to reduce the domain shift between the source dataset distribution and the target dataset distribution. We find that models trained on the transformed source domain dataset performs significantly better than zero-shot models. Using our proposed transformations to convert standard English to tweets, we reach an unsupervised part-of-speech (POS) tagging accuracy of 92.14% (from 81.54% zero shot accuracy), which is only slightly below the supervised performance of 94.45%. We also use our proposed transformations to synthetically generate tweets and augment the Twitter dataset to achieve state-of-the-art performance for POS tagging.

pdf bib
Probing Quantifier Comprehension in Large Language Models: Another Example of Inverse Scaling
Akshat Gupta
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

With their increasing size, large language models (LLMs) are becoming increasingly good at language understanding tasks. But even with high performance on specific downstream task, LLMs fail at simple linguistic tests for negation or quantifier understanding. Previous work on quantifier understanding in LLMs show inverse scaling in understanding few-type quantifiers. In this paper, we question the claims of of previous work and show that it is a result of inappropriate testing methodology. We also present alternate methods to measure quantifier comprehension in LLMs and show that LLMs are able to better understand the difference between the meaning of few-type and most-type quantifiers as their size increases, although they are not particularly good at it. We also observe inverse scaling for most-type quantifier understanding, which is contrary to human psycho-linguistic experiments and previous work, where the model’s understanding of most-type quantifier gets worse as the model size increases. We do this evaluation on models ranging from 125M-175B parameters, which suggests that LLMs do not do as well as expected with quantifiers. We also discuss the possible reasons for this and the relevance of quantifier understanding in evaluating language understanding in LLMs.

2022

pdf bib
AIR-JPMC@SMM4H’22: Classifying Self-Reported Intimate Partner Violence in Tweets with Multiple BERT-based Models
Alec Louis Candidato | Akshat Gupta | Xiaomo Liu | Sameena Shah
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

This paper presents our submission for the SMM4H 2022-Shared Task on the classification of self-reported intimate partner violence on Twitter (in English). The goal of this task was to accurately determine if the contents of a given tweet demonstrated someone reporting their own experience with intimate partner violence. The submitted system is an ensemble of five RoBERTa models each weighted by their respective F1-scores on the validation data-set. This system performed 13% better than the baseline and was the best performing system overall for this shared task.

pdf bib
AIR-JPMC@SMM4H’22: Identifying Self-Reported Spanish COVID-19 Symptom Tweets Through Multiple-Model Ensembling
Adrian Garcia Hernandez | Leung Wai Liu | Akshat Gupta | Vineeth Ravi | Saheed O. Obitayo | Xiaomo Liu | Sameena Shah
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

We present our response to Task 5 of the Social Media Mining for Health Applications (SMM4H) 2022 competition. We share our approach into classifying whether a tweet in Spanish about COVID-19 symptoms pertain to themselves, others, or not at all. Using a combination of BERT based models, we were able to achieve results that were higher than the median result of the competition.

pdf bib
AIR-JPMC@SMM4H’22: BERT + Ensembling = Too Cool: Using Multiple BERT Models Together for Various COVID-19 Tweet Identification Tasks
Leung Wai Liu | Akshat Gupta | Saheed Obitayo | Xiaomo Liu | Sameena Shah
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

This paper presents my submission for Tasks 1 and 2 for the Social Media Mining of Health (SMM4H) 2022 Shared Tasks competition. I first describe the background behind each of these tasks, followed by the descriptions of the various subtasks of Tasks 1 and 2, then present the methodology. Through model ensembling, this methodology was able to achieve higher results than the mean and median of the competition for the classification tasks.

pdf bib
On Building Spoken Language Understanding Systems for Low Resourced Languages
Akshat Gupta
Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

Spoken dialog systems are slowly becoming an integral part of the human experience due to their various advantages over textual interfaces. Spoken language understanding (SLU) systems are fundamental building blocks of spoken dialog systems. But creating SLU systems for low resourced languages is still a challenge. In a large number of low resourced language, we don’t have access to enough data to build automatic speech recognition (ASR) technologies, which are fundamental to any SLU system. Also, ASR based SLU systems do not generalize to unwritten languages. In this paper, we present a series of experiments to explore extremely low-resourced settings where we perform intent classification with systems trained on as low as one data-point per intent and with only one speaker in the dataset. We also work in a low-resourced setting where we do not use language specific ASR systems to transcribe input speech, which compounds the challenge of building SLU systems to simulate a true low-resourced setting. We test our system on Belgian Dutch (Flemish) and English and find that using phonetic transcriptions to make intent classification systems in such low-resourced setting performs significantly better than using speech features. Specifically, when using a phonetic transcription based system over a feature based system, we see average improvements of 12.37% and 13.08% for binary and four-class classification problems respectively, when averaged over 49 different experimental settings.

pdf bib
TweetFinSent: A Dataset of Stock Sentiments on Twitter
Yulong Pei | Amarachi Mbakwe | Akshat Gupta | Salwa Alamir | Hanxuan Lin | Xiaomo Liu | Sameena Shah
Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)

Stock sentiment has strong correlations with the stock market but traditional sentiment analysis task classifies sentiment according to having feelings and emotions of good or bad. This definition of sentiment is not an accurate indicator of public opinion about specific stocks. To bridge this gap, we introduce a new task of stock sentiment analysis and present a new dataset for this task named TweetFinSent. In TweetFinSent, tweets are annotated based on if one gained or expected to gain positive or negative return from a stock. Experiments on TweetFinSent with several sentiment analysis models from lexicon-based to transformer-based have been conducted. Experimental results show that TweetFinSent dataset constitutes a challenging problem and there is ample room for improvement on the stock sentiment analysis task. TweetFinSent is available at https://github.com/jpmcair/tweetfinsent.

pdf bib
TransPOS: Transformers for Consolidating Different POS Tagset Datasets
Alex Li | Ilyas Bankole-Hameed | Ranadeep Singh | Gabriel Ng | Akshat Gupta
Proceedings of the Eighth Workshop on Noisy User-generated Text (W-NUT 2022)

In hope of expanding training data, researchers often want to merge two or more datasets that are created using different labeling schemes. This paper considers two datasets that label part-of-speech (POS) tags under different tagging schemes and leverage the supervised labels of one dataset to help generate labels for the other dataset. This paper further discusses the theoretical difficulties of this approach and proposes a novel supervised architecture employing Transformers to tackle the problem of consolidating two completely disjoint datasets. The results diverge from initial expectations and discourage exploration into the use of disjoint labels to consolidate datasets with different labels.

2021

pdf bib
Task-Specific Pre-Training and Cross Lingual Transfer for Sentiment Analysis in Dravidian Code-Switched Languages
Akshat Gupta | Sai Krishna Rallabandi | Alan W Black
Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages

Sentiment analysis in Code-Mixed languages has garnered a lot of attention in recent years. It is an important task for social media monitoring and has many applications, as a large chunk of social media data is Code-Mixed. In this paper, we work on the problem of sentiment analysis for Dravidian Code-Switched languages - Tamil-Engish and Malayalam-English, using three different BERT based models. We leverage task-specific pre-training and cross-lingual transfer to improve on previously reported results, with significant improvement for the Tamil-Engish dataset. We also present a multilingual sentiment classification model that has competitive performance on both Tamil-English and Malayalam-English datasets.

pdf bib
SJ_AJ@DravidianLangTech-EACL2021: Task-Adaptive Pre-Training of Multilingual BERT models for Offensive Language Identification
Sai Muralidhar Jayanthi | Akshat Gupta
Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages

In this paper we present our submission for the EACL 2021-Shared Task on Offensive Language Identification in Dravidian languages. Our final system is an ensemble of mBERT and XLM-RoBERTa models which leverage task-adaptive pre-training of multilingual BERT models with a masked language modeling objective. Our system was ranked 1st for Kannada, 2nd for Malayalam and 3rd for Tamil.

pdf bib
Unsupervised Self-Training for Sentiment Analysis of Code-Switched Data
Akshat Gupta | Sargam Menghani | Sai Krishna Rallabandi | Alan W Black
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching

Sentiment analysis is an important task in understanding social media content like customer reviews, Twitter and Facebook feeds etc. In multilingual communities around the world, a large amount of social media text is characterized by the presence of Code-Switching. Thus, it has become important to build models that can handle code-switched data. However, annotated code-switched data is scarce and there is a need for unsupervised models and algorithms. We propose a general framework called Unsupervised Self-Training and show its applications for the specific use case of sentiment analysis of code-switched data. We use the power of pre-trained BERT models for initialization and fine-tune them in an unsupervised manner, only using pseudo labels produced by zero-shot transfer. We test our algorithm on multiple code-switched languages and provide a detailed analysis of the learning dynamics of the algorithm with the aim of answering the question - ‘Does our unsupervised model understand the Code-Switched languages or does it just learn its representations?’. Our unsupervised models compete well with their supervised counterparts, with their performance reaching within 1-7% (weighted F1 scores) when compared to supervised models trained for a two class problem.