Akshat Shrivastava


pdf bib
RetroNLU: Retrieval Augmented Task-Oriented Semantic Parsing
Vivek Gupta | Akshat Shrivastava | Adithya Sagar | Armen Aghajanyan | Denis Savenkov
Proceedings of the 4th Workshop on NLP for Conversational AI

While large pre-trained language models accumulate a lot of knowledge in their parameters, it has been demonstrated that augmenting it with non-parametric retrieval-based memory has a number of benefits ranging from improved accuracy to data efficiency for knowledge-focused tasks such as question answering. In this work, we apply retrieval-based modeling ideas to the challenging complex task of multi-domain task-oriented semantic parsing for conversational assistants. Our technique, RetroNLU, extends a sequence-to-sequence model architecture with a retrieval component, which is used to retrieve existing similar samples and present them as an additional context to the model. In particular, we analyze two settings, where we augment an input with (a) retrieved nearest neighbor utterances (utterance-nn), and (b) ground-truth semantic parses of nearest neighbor utterances (semparse-nn). Our technique outperforms the baseline method by 1.5% absolute macro-F1, especially at the low resource setting, matching the baseline model accuracy with only 40% of the complete data.Furthermore, we analyse the quality, model sensitivity, and performance of the nearest neighbor retrieval component’s for semantic parses of varied utterance complexity.


pdf bib
Span Pointer Networks for Non-Autoregressive Task-Oriented Semantic Parsing
Akshat Shrivastava | Pierce Chuang | Arun Babu | Shrey Desai | Abhinav Arora | Alexander Zotov | Ahmed Aly
Findings of the Association for Computational Linguistics: EMNLP 2021

An effective recipe for building seq2seq, non-autoregressive, task-oriented parsers to map utterances to semantic frames proceeds in three steps: encoding an utterance x, predicting a frame’s length |y|, and decoding a |y|-sized frame with utterance and ontology tokens. Though empirically strong, these models are typically bottlenecked by length prediction, as even small inaccuracies change the syntactic and semantic characteristics of resulting frames. In our work, we propose span pointer networks, non-autoregressive parsers which shift the decoding task from text generation to span prediction; that is, when imputing utterance spans into frame slots, our model produces endpoints (e.g., [i, j]) as opposed to text (e.g., “6pm”). This natural quantization of the output space reduces the variability of gold frames, therefore improving length prediction and, ultimately, exact match. Furthermore, length prediction is now responsible for frame syntax and the decoder is responsible for frame semantics, resulting in a coarse-to-fine model. We evaluate our approach on several task-oriented semantic parsing datasets. Notably, we bridge the quality gap between non-autogressive and autoregressive parsers, achieving 87 EM on TOPv2 (Chen et al. 2020). Furthermore, due to our more consistent gold frames, we show strong improvements in model generalization in both cross-domain and cross-lingual transfer in low-resource settings. Finally, due to our diminished output vocabulary, we observe 70% reduction in latency and 83% reduction in memory at beam size 5 compared to prior non-autoregressive parsers.

pdf bib
Non-Autoregressive Semantic Parsing for Compositional Task-Oriented Dialog
Arun Babu | Akshat Shrivastava | Armen Aghajanyan | Ahmed Aly | Angela Fan | Marjan Ghazvininejad
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Semantic parsing using sequence-to-sequence models allows parsing of deeper representations compared to traditional word tagging based models. In spite of these advantages, widespread adoption of these models for real-time conversational use cases has been stymied by higher compute requirements and thus higher latency. In this work, we propose a non-autoregressive approach to predict semantic parse trees with an efficient seq2seq model architecture. By combining non-autoregressive prediction with convolutional neural networks, we achieve significant latency gains and parameter size reduction compared to traditional RNN models. Our novel architecture achieves up to an 81% reduction in latency on TOP dataset and retains competitive performance to non-pretrained models on three different semantic parsing datasets.

pdf bib
Muppet: Massive Multi-task Representations with Pre-Finetuning
Armen Aghajanyan | Anchit Gupta | Akshat Shrivastava | Xilun Chen | Luke Zettlemoyer | Sonal Gupta
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We propose pre-finetuning, an additional large-scale learning stage between language model pre-training and fine-tuning. Pre-finetuning is massively multi-task learning (around 50 datasets, over 4.8 million total labeled examples), and is designed to encourage learning of representations that generalize better to many different tasks. We show that pre-finetuning consistently improves performance for pretrained discriminators (e.g. RoBERTa) and generation models (e.g. BART) on a wide range of tasks (sentence prediction, commonsense reasoning, MRC, etc.), while also significantly improving sample efficiency during fine-tuning. We also show that large-scale multi-tasking is crucial; pre-finetuning can hurt performance when few tasks are used up until a critical point (usually above 15) after which performance improves linearly in the number of tasks.


pdf bib
Conversational Semantic Parsing
Armen Aghajanyan | Jean Maillard | Akshat Shrivastava | Keith Diedrick | Michael Haeger | Haoran Li | Yashar Mehdad | Veselin Stoyanov | Anuj Kumar | Mike Lewis | Sonal Gupta
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The structured representation for semantic parsing in task-oriented assistant systems is geared towards simple understanding of one-turn queries. Due to the limitations of the representation, the session-based properties such as co-reference resolution and context carryover are processed downstream in a pipelined system. In this paper, we propose a semantic representation for such task-oriented conversational systems that can represent concepts such as co-reference and context carryover, enabling comprehensive understanding of queries in a session. We release a new session-based, compositional task-oriented parsing dataset of 20k sessions consisting of 60k utterances. Unlike Dialog State Tracking Challenges, the queries in the dataset have compositional forms. We propose a new family of Seq2Seq models for the session-based parsing above, which also set state-of-the-art in ATIS, SNIPS, TOP and DSTC2. Notably, we improve the best known results on DSTC2 by up to 5 points for slot-carryover.