Akshay Chaturvedi


pdf bib
Limits for learning with language models
Nicholas Asher | Swarnadeep Bhar | Akshay Chaturvedi | Julie Hunter | Soumya Paul
Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)

With the advent of large language models (LLMs), the trend in NLP has been to train LLMs on vast amounts of data to solve diverse language understanding and generation tasks. The list of LLM successes is long and varied. Nevertheless, several recent papers provide empirical evidence that LLMs fail to capture important aspects of linguistic meaning. Focusing on universal quantification, we provide a theoretical foundation for these empirical findings by proving that LLMs cannot learn certain fundamental semantic properties including semantic entailment and consistency as they are defined in formal semantics. More generally, we show that LLMs are unable to learn concepts beyond the first level of the Borel Hierarchy, which imposes severe limits on the ability of LMs, both large and small, to capture many aspects of linguistic meaning. This means that LLMs will operate without formal guarantees on tasks that require entailments and deep linguistic understanding.


pdf bib
CNN for Text-Based Multiple Choice Question Answering
Akshay Chaturvedi | Onkar Pandit | Utpal Garain
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

The task of Question Answering is at the very core of machine comprehension. In this paper, we propose a Convolutional Neural Network (CNN) model for text-based multiple choice question answering where questions are based on a particular article. Given an article and a multiple choice question, our model assigns a score to each question-option tuple and chooses the final option accordingly. We test our model on Textbook Question Answering (TQA) and SciQ dataset. Our model outperforms several LSTM-based baseline models on the two datasets.


pdf bib
A Neural Lemmatizer for Bengali
Abhisek Chakrabarty | Akshay Chaturvedi | Utpal Garain
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

We propose a novel neural lemmatization model which is language independent and supervised in nature. To handle the words in a neural framework, word embedding technique is used to represent words as vectors. The proposed lemmatizer makes use of contextual information of the surface word to be lemmatized. Given a word along with its contextual neighbours as input, the model is designed to produce the lemma of the concerned word as output. We introduce a new network architecture that permits only dimension specific connections between the input and the output layer of the model. For the present work, Bengali is taken as the reference language. Two datasets are prepared for training and testing purpose consisting of 19,159 and 2,126 instances respectively. As Bengali is a resource scarce language, these datasets would be beneficial for the respective research community. Evaluation method shows that the neural lemmatizer achieves 69.57% accuracy on the test dataset and outperforms the simple cosine similarity based baseline strategy by a margin of 1.37%.