Akul Singh
2024
pyTLEX: A Python Library for TimeLine EXtraction
Akul Singh
|
Jared Hummer
|
Mustafa Ocal
|
Mark Finlayson
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
pyTLEX is an implementation of the TimeLine EXtraction algorithm (TLEX; Finlayson et al.,2021) that enables users to work with TimeML annotations and perform advanced temporal analysis, offering a comprehensive suite of features. TimeML is a standardized markup language for temporal information in text. pyTLEX allows users to parse TimeML annotations, construct TimeML graphs, and execute the TLEX algorithm to effect complete timeline extraction. In contrast to previous implementations (i.e., jTLEX for Java), pyTLEX sets itself apart with a range of advanced features. It introduces a React-based visualization system, enhancing the exploration of temporal data and the comprehension of temporal connections within textual information. Furthermore, pyTLEX incorporates an algorithm for increasing connectivity in temporal graphs, which identifies graph disconnectivity and recommends links based on temporal reasoning, thus enhancing the coherence of the graph representation. Additionally, pyTLEX includes a built-in validation algorithm, ensuring compliance with TimeML annotation guidelines, which is essential for maintaining data quality and reliability. pyTLEX equips researchers and developers with an extensive toolkit for temporal analysis, and its testing across various datasets validates its accuracy and reliability.
2023
jTLEX: a Java Library for TimeLine EXtraction
Mustafa Ocal
|
Akul Singh
|
Jared Hummer
|
Antonela Radas
|
Mark Finlayson
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
jTLEX is a programming library that provides a Java implementation of the TimeLine EXtraction algorithm (TLEX; Finlayson et al.,2021), along with utilities for programmatic manipulation of TimeML graphs. Timelines are useful for a number of natural language understanding tasks, such as question answering, cross-document event coreference, and summarization & visualization. jTLEX provides functionality for (1) parsing TimeML annotations into Java objects, (2) construction of TimeML graphs from scratch, (3) partitioning of TimeML graphs into temporally connected subgraphs, (4) transforming temporally connected subgraphs into point algebra (PA) graphs, (5) extracting exact timeline of TimeML graphs, (6) detecting inconsistent subgraphs, and (7) calculating indeterminate sections of the timeline. The library has been tested on the entire TimeBank corpus, and comes with a suite of unit tests. We release the software as open source with a free license for non-commercial use.