This paper describes our participation in Task 12: AfriSenti-SemEval 2023, i.e., track 12 of subtask A, track 16 of subtask B, and track 18 of subtask C. To deal with these three tracks, we utilize Support Vector Machine (SVM) + One vs Rest, SVM + One vs Rest with SMOTE, and AfriBERTa-large models. In particular, our SVM + One vs Rest with SMOTE model could obtain the highest weighted F1-Score for tracks 16 and 18 in the evaluation phase, that is, 65.14% and 33.49%, respectively. Meanwhile, our SVM + One vs Rest model could perform better than other models for track 12 in the evaluation phase.
This paper describes the participation of DBMS-KU team in the SemEval 2019 Task 9, that is, suggestion mining from online reviews and forums. To deal with this task, we explore several machine learning approaches, i.e., Random Forest (RF), Logistic Regression (LR), Multinomial Naive Bayes (MNB), Linear Support Vector Classification (LSVC), Sublinear Support Vector Classification (SSVC), Convolutional Neural Network (CNN), and Variable Length Chromosome Genetic Algorithm-Naive Bayes (VLCGA-NB). Our system obtains reasonable results of F1-Score 0.47 and 0.37 on the evaluation data in Subtask A and Subtask B, respectively. In particular, our obtained results outperform the baseline in Subtask A. Interestingly, the results seem to show that our system could perform well in classifying Non-suggestion class.
This paper presents the participation of DBMS-KU Interpolation system in WMT19 shared task, namely, Kazakh-English language pair. We examine the use of interpolation method using a different language model order. Our Interpolation system combines a direct translation with Russian as a pivot language. We use 3-gram and 5-gram language model orders to perform the language translation in this work. To reduce noise in the pivot translation process, we prune the phrase table of source-pivot and pivot-target. Our experimental results show that our Interpolation system outperforms the Baseline in terms of BLEU-cased score by +0.5 and +0.1 points in Kazakh-English and English-Kazakh, respectively. In particular, using the 5-gram language model order in our system could obtain better BLEU-cased score than utilizing the 3-gram one. Interestingly, we found that by employing the Interpolation system could reduce the perplexity score of English-Kazakh when using 3-gram language model order.