Alan Lu


pdf bib
Semi-Supervised Learning with Auxiliary Evaluation Component for Large Scale e-Commerce Text Classification
Mingkuan Liu | Musen Wen | Selcuk Kopru | Xianjing Liu | Alan Lu
Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP

The lack of high-quality labeled training data has been one of the critical challenges facing many industrial machine learning tasks. To tackle this challenge, in this paper, we propose a semi-supervised learning method to utilize unlabeled data and user feedback signals to improve the performance of ML models. The method employs a primary model Main and an auxiliary evaluation model Eval, where Main and Eval models are trained iteratively by automatically generating labeled data from unlabeled data and/or users’ feedback signals. The proposed approach is applied to different text classification tasks. We report results on both the publicly available Yahoo! Answers dataset and our e-commerce product classification dataset. The experimental results show that the proposed method reduces the classification error rate by 4% and up to 15% across various experimental setups and datasets. A detailed comparison with other semi-supervised learning approaches is also presented later in the paper. The results from various text classification tasks demonstrate that our method outperforms those developed in previous related studies.