Albert Y.S. Lam


2024

pdf bib
Leveraging Mandarin as a Pivot Language for Low-Resource Machine Translation between Cantonese and English
King Yiu Suen | Rudolf Chow | Albert Y.S. Lam
Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)

Cantonese, the second most prevalent Chinese dialect after Mandarin, has been relatively overlooked in machine translation (MT) due to a scarcity of bilingual resources. In this paper, we propose to leverage Mandarin, a high-resource language, as a pivot language for translating between Cantonese and English. Our method utilizes transfer learning from pre-trained Bidirectional and Auto-Regressive Transformer (BART) models to initialize auxiliary source-pivot and pivot-target MT models. The parameters of the trained auxiliary models are then used to initialize the source-target model. Based on our experiments, our proposed method outperforms several baseline initialization strategies, naive pivot translation, and two commercial translation systems in both translation directions.

2023

pdf bib
Revisit Few-shot Intent Classification with PLMs: Direct Fine-tuning vs. Continual Pre-training
Haode Zhang | Haowen Liang | Liming Zhan | Albert Y.S. Lam | Xiao-Ming Wu
Findings of the Association for Computational Linguistics: ACL 2023

We consider the task of few-shot intent detection, which involves training a deep learning model to classify utterances based on their underlying intents using only a small amount of labeled data. The current approach to address this problem is through continual pre-training, i.e., fine-tuning pre-trained language models (PLMs) on external resources (e.g., conversational corpora, public intent detection datasets, or natural language understanding datasets) before using them as utterance encoders for training an intent classifier. In this paper, we show that continual pre-training may not be essential, since the overfitting problem of PLMs on this task may not be as serious as expected. Specifically, we find that directly fine-tuning PLMs on only a handful of labeled examples already yields decent results compared to methods that employ continual pre-training, and the performance gap diminishes rapidly as the number of labeled data increases. To maximize the utilization of the limited available data, we propose a context augmentation method and leverage sequential self-distillation to boost performance. Comprehensive experiments on real-world benchmarks show that given only two or more labeled samples per class, direct fine-tuning outperforms many strong baselines that utilize external data sources for continual pre-training. The code can be found at https://github.com/hdzhang-code/DFTPlus.

2022

pdf bib
A Closer Look at Few-Shot Out-of-Distribution Intent Detection
Li-Ming Zhan | Haowen Liang | Lu Fan | Xiao-Ming Wu | Albert Y.S. Lam
Proceedings of the 29th International Conference on Computational Linguistics

We consider few-shot out-of-distribution (OOD) intent detection, a practical and important problem for the development of task-oriented dialogue systems. Despite its importance, this problem is seldom studied in the literature, let alone examined in a systematic way. In this work, we take a closer look at this problem and identify key issues for research. In our pilot study, we reveal the reason why existing OOD intent detection methods are not adequate in dealing with this problem. Based on the observation, we propose a promising approach to tackle this problem based on latent representation generation and self-supervision. Comprehensive experiments on three real-world intent detection benchmark datasets demonstrate the high effectiveness of our proposed approach and its great potential in improving state-of-the-art methods for few-shot OOD intent detection.

2021

pdf bib
Out-of-Scope Intent Detection with Self-Supervision and Discriminative Training
Li-Ming Zhan | Haowen Liang | Bo Liu | Lu Fan | Xiao-Ming Wu | Albert Y.S. Lam
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Out-of-scope intent detection is of practical importance in task-oriented dialogue systems. Since the distribution of outlier utterances is arbitrary and unknown in the training stage, existing methods commonly rely on strong assumptions on data distribution such as mixture of Gaussians to make inference, resulting in either complex multi-step training procedures or hand-crafted rules such as confidence threshold selection for outlier detection. In this paper, we propose a simple yet effective method to train an out-of-scope intent classifier in a fully end-to-end manner by simulating the test scenario in training, which requires no assumption on data distribution and no additional post-processing or threshold setting. Specifically, we construct a set of pseudo outliers in the training stage, by generating synthetic outliers using inliner features via self-supervision and sampling out-of-scope sentences from easily available open-domain datasets. The pseudo outliers are used to train a discriminative classifier that can be directly applied to and generalize well on the test task. We evaluate our method extensively on four benchmark dialogue datasets and observe significant improvements over state-of-the-art approaches. Our code has been released at https://github.com/liam0949/DCLOOS.

pdf bib
Effectiveness of Pre-training for Few-shot Intent Classification
Haode Zhang | Yuwei Zhang | Li-Ming Zhan | Jiaxin Chen | Guangyuan Shi | Albert Y.S. Lam | Xiao-Ming Wu
Findings of the Association for Computational Linguistics: EMNLP 2021

This paper investigates the effectiveness of pre-training for few-shot intent classification. While existing paradigms commonly further pre-train language models such as BERT on a vast amount of unlabeled corpus, we find it highly effective and efficient to simply fine-tune BERT with a small set of labeled utterances from public datasets. Specifically, fine-tuning BERT with roughly 1,000 labeled data yields a pre-trained model – IntentBERT, which can easily surpass the performance of existing pre-trained models for few-shot intent classification on novel domains with very different semantics. The high effectiveness of IntentBERT confirms the feasibility and practicality of few-shot intent detection, and its high generalization ability across different domains suggests that intent classification tasks may share a similar underlying structure, which can be efficiently learned from a small set of labeled data. The source code can be found at https://github.com/hdzhang-code/IntentBERT.

2020

pdf bib
Unknown Intent Detection Using Gaussian Mixture Model with an Application to Zero-shot Intent Classification
Lu Fan | Guangfeng Yan | Qimai Li | Han Liu | Xiaotong Zhang | Albert Y.S. Lam | Xiao-Ming Wu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

User intent classification plays a vital role in dialogue systems. Since user intent may frequently change over time in many realistic scenarios, unknown (new) intent detection has become an essential problem, where the study has just begun. This paper proposes a semantic-enhanced Gaussian mixture model (SEG) for unknown intent detection. In particular, we model utterance embeddings with a Gaussian mixture distribution and inject dynamic class semantic information into Gaussian means, which enables learning more class-concentrated embeddings that help to facilitate downstream outlier detection. Coupled with a density-based outlier detection algorithm, SEG achieves competitive results on three real task-oriented dialogue datasets in two languages for unknown intent detection. On top of that, we propose to integrate SEG as an unknown intent identifier into existing generalized zero-shot intent classification models to improve their performance. A case study on a state-of-the-art method, ReCapsNet, shows that SEG can push the classification performance to a significantly higher level.

2019

pdf bib
Reconstructing Capsule Networks for Zero-shot Intent Classification
Han Liu | Xiaotong Zhang | Lu Fan | Xuandi Fu | Qimai Li | Xiao-Ming Wu | Albert Y.S. Lam
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Intent classification is an important building block of dialogue systems. With the burgeoning of conversational AI, existing systems are not capable of handling numerous fast-emerging intents, which motivates zero-shot intent classification. Nevertheless, research on this problem is still in the incipient stage and few methods are available. A recently proposed zero-shot intent classification method, IntentCapsNet, has been shown to achieve state-of-the-art performance. However, it has two unaddressed limitations: (1) it cannot deal with polysemy when extracting semantic capsules; (2) it hardly recognizes the utterances of unseen intents in the generalized zero-shot intent classification setting. To overcome these limitations, we propose to reconstruct capsule networks for zero-shot intent classification. First, we introduce a dimensional attention mechanism to fight against polysemy. Second, we reconstruct the transformation matrices for unseen intents by utilizing abundant latent information of the labeled utterances, which significantly improves the model generalization ability. Experimental results on two task-oriented dialogue datasets in different languages show that our proposed method outperforms IntentCapsNet and other strong baselines.