This paper presents a reproduction study aimed at reproducing and validating a human NLP evaluation performed for the DExperts text generation method. The original study introduces DExperts, a controlled text generation method, evaluated using non-toxic prompts from the RealToxicityPrompts dataset. Our reproduction study aims to reproduce the human evaluation of the continuations generated by DExperts in comparison with four baseline methods, in terms of toxicity, topicality, and fluency. We first describe the agreed approach for reproduction within the ReproHum project and detail the configuration of the original evaluation, including necessary adaptations for reproduction. Then, we make a comparison of our reproduction results with those reported in the reproduced paper. Interestingly, we observe how the human evaluators in our experiment appreciate higher quality in the texts generated by DExperts in terms of less toxicity and better fluency. All in all, new scores are higher, also for the baseline methods. This study contributes to ongoing efforts in ensuring the reproducibility and reliability of findings in NLP evaluation and emphasizes the critical role of robust methodologies in advancing the field.
This paper presents a human evaluation reproduction study regarding the data-to-text generation task. The evaluation focuses in counting the supported and contradicting facts generated by a neural data-to-text model with a macro planning stage. The model is tested generating sport summaries for the ROTOWIRE dataset. We first describe the approach to reproduction that is agreed in the context of the ReproHum project. Then, we detail the entire configuration of the original human evaluation and the adaptations that had to be made to reproduce such an evaluation. Finally, we compare the reproduction results with those reported in the paper that was taken as reference.
The development of language technologies (LTs) such as machine translation, text analytics, and dialogue systems is essential in the current digital society, culture and economy. These LTs, widely supported in languages in high demand worldwide, such as English, are also necessary for smaller and less economically powerful languages, as they are a driving force in the democratization of the communities that use them due to their great social and cultural impact. As an example, dialogue systems allow us to communicate with machines in our own language; machine translation increases access to contents in different languages, thus facilitating intercultural relations; and text-to-speech and speech-to-text systems broaden different categories of users’ access to technology. In the case of Galician (co-official language, together with Spanish, in the autonomous region of Galicia, located in northwestern Spain), incorporating the language into state-of-the-art AI applications can not only significantly favor its prestige (a decisive factor in language normalization), but also guarantee citizens’ language rights, reduce social inequality, and narrow the digital divide. This is the main motivation behind the Nós Project (Proxecto Nós), which aims to have a significant contribution to the development of LTs in Galician (currently considered a low-resource language) by providing openly licensed resources, tools, and demonstrators in the area of intelligent technologies.
In order to increase trust in the usage of Bayesian Networks and to cement their role as a model which can aid in critical decision making, the challenge of explainability must be faced. Previous attempts at explaining Bayesian Networks have largely focused on graphical or visual aids. In this paper we aim to highlight the importance of a natural language approach to explanation and to discuss some of the previous and state of the art attempts of the textual explanation of Bayesian Networks. We outline several challenges that remain to be addressed in the generation and validation of natural language explanations of Bayesian Networks. This can serve as a reference for future work on natural language explanations of Bayesian Networks.
The evaluation of Natural Language Generation (NLG) systems has recently aroused much interest in the research community, since it should address several challenging aspects, such as readability of the generated texts, adequacy to the user within a particular context and moment and linguistic quality-related issues (e.g., correctness, coherence, understandability), among others. In this paper, we propose a novel technique for evaluating NLG systems that is inspired on the triangular test used in the field of sensory analysis. This technique allows us to compare two texts generated by different subjects and to i) determine whether statistically significant differences are detected between them when evaluated by humans and ii) quantify to what extent the number of evaluators plays an important role in the sensitivity of the results. As a proof of concept, we apply this evaluation technique in a real use case in the field of meteorology, showing the advantages and disadvantages of our proposal.
In this paper, we describe SimpleNLG-GL, an adaptation of the linguistic realisation SimpleNLG library for the Galician language. This implementation is derived from SimpleNLG-ES, the English-Spanish version of this library. It has been tested using a battery of examples which covers the most common rules for Galician.
We describe SimpleNLG-ES, an adaptation of the SimpleNLG realization library for the Spanish language. Our implementation is based on the bilingual English-French SimpleNLG-EnFr adaptation. The library has been tested using a battery of examples that ensure that the most common syntax, morphology and orthography rules for Spanish are met. The library is currently being used in three different projects for the development of data-to-text systems in the meteorological, statistical data information, and business intelligence application domains.