Alberto Poncelas


2024

pdf bib
Rakuten’s Participation in WMT 2024 Patent Translation Task
Ohnmar Htun | Alberto Poncelas
Proceedings of the Ninth Conference on Machine Translation

This paper introduces our machine transla- tion system (team sakura), developed for the 2024 WMT Patent Translation Task. Our sys- tem focuses on translations between Japanese- English, Japanese-Korean, and Japanese- Chinese. As large language models have shown good results for various natural language pro- cessing tasks, we have adopted the RakutenAI- 7B-chat model, which has demonstrated effec- tiveness in English and Japanese. We fine-tune this model with patent-domain parallel texts and translate using multiple prompts.

2023

pdf bib
Sakura at SemEval-2023 Task 2: Data Augmentation via Translation
Alberto Poncelas | Maksim Tkachenko | Ohnmar Htun
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

We demonstrate a simple yet effective approach to augmenting training data for multilingual named entity recognition using translations. The named entity spans from the original sentences are transferred to translations via word alignment and then filtered with the baseline recognizer. The proposed approach outperforms the baseline XLM-Roberta on the multilingual dataset.

2022

pdf bib
Benefiting from Language Similarity in the Multilingual MT Training: Case Study of Indonesian and Malaysian
Alberto Poncelas | Johanes Effendi
Proceedings of the Fifth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2022)

The development of machine translation (MT) has been successful in breaking the language barrier of the world’s top 10-20 languages. However, for the rest of it, delivering an acceptable translation quality is still a challenge due to the limited resource. To tackle this problem, most studies focus on augmenting data while overlooking the fact that we can borrow high-quality natural data from the closely-related language. In this work, we propose an MT model training strategy by increasing the language directions as a means of augmentation in a multilingual setting. Our experiment result using Indonesian and Malaysian on the state-of-the-art MT model showcases the effectiveness and robustness of our method.

pdf bib
Controlling Japanese Machine Translation Output by Using JLPT Vocabulary Levels
Alberto Poncelas | Ohnmar Htun
Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)

In Neural Machine Translation (NMT) systems, there is generally little control over the lexicon of the output. Consequently, the translated output may be too difficult for certain audiences. For example, for people with limited knowledge of the language, vocabulary is a major impediment to understanding a text. In this work, we build a complexity-controllable NMT for English-to-Japanese translations. More particularly, we aim to modulate the difficulty of the translation in terms of not only the vocabulary but also the use of kanji. For achieving this, we follow a sentence-tagging approach to influence the output. Controlling Japanese Machine Translation Output by Using JLPT Vocabulary Levels.

pdf bib
Rakuten’s Participation in WAT 2022: Parallel Dataset Filtering by Leveraging Vocabulary Heterogeneity
Alberto Poncelas | Johanes Effendi | Ohnmar Htun | Sunil Yadav | Dongzhe Wang | Saurabh Jain
Proceedings of the 9th Workshop on Asian Translation

This paper introduces our neural machine translation system’s participation in the WAT 2022 shared translation task (team ID: sakura). We participated in the Parallel Data Filtering Task. Our approach based on Feature Decay Algorithms achieved +1.4 and +2.4 BLEU points for English to Japanese and Japanese to English respectively compared to the model trained on the full dataset, showing the effectiveness of FDA on in-domain data selection.

2021

pdf bib
On Machine Translation of User Reviews
Maja Popović | Alberto Poncelas | Marija Brkic | Andy Way
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

This work investigates neural machine translation (NMT) systems for translating English user reviews into Croatian and Serbian, two similar morphologically complex languages. Two types of reviews are used for testing the systems: IMDb movie reviews and Amazon product reviews. Two types of training data are explored: large out-of-domain bilingual parallel corpora, as well as small synthetic in-domain parallel corpus obtained by machine translation of monolingual English Amazon reviews into the target languages. Both automatic scores and human evaluation show that using the synthetic in-domain corpus together with a selected sub-set of out-of-domain data is the best option. Separated results on IMDb and Amazon reviews indicate that MT systems perform differently on different review types so that user reviews generally should not be considered as a homogeneous genre. Nevertheless, more detailed research on larger amount of different reviews covering different domains/topics is needed to fully understand these differences.

2020

pdf bib
Selecting Backtranslated Data from Multiple Sources for Improved Neural Machine Translation
Xabier Soto | Dimitar Shterionov | Alberto Poncelas | Andy Way
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Machine translation (MT) has benefited from using synthetic training data originating from translating monolingual corpora, a technique known as backtranslation. Combining backtranslated data from different sources has led to better results than when using such data in isolation. In this work we analyse the impact that data translated with rule-based, phrase-based statistical and neural MT systems has on new MT systems. We use a real-world low-resource use-case (Basque-to-Spanish in the clinical domain) as well as a high-resource language pair (German-to-English) to test different scenarios with backtranslation and employ data selection to optimise the synthetic corpora. We exploit different data selection strategies in order to reduce the amount of data used, while at the same time maintaining high-quality MT systems. We further tune the data selection method by taking into account the quality of the MT systems used for backtranslation and lexical diversity of the resulting corpora. Our experiments show that incorporating backtranslated data from different sources can be beneficial, and that availing of data selection can yield improved performance.

pdf bib
The Impact of Indirect Machine Translation on Sentiment Classification
Alberto Poncelas | Pintu Lohar | James Hadley | Andy Way
Proceedings of the 14th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

pdf bib
Using Multiple Subwords to Improve English-Esperanto Automated Literary Translation Quality
Alberto Poncelas | Jan Buts | James Hadley | Andy Way
Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages

Building Machine Translation (MT) systems for low-resource languages remains challenging. For many language pairs, parallel data are not widely available, and in such cases MT models do not achieve results comparable to those seen with high-resource languages. When data are scarce, it is of paramount importance to make optimal use of the limited material available. To that end, in this paper we propose employing the same parallel sentences multiple times, only changing the way the words are split each time. For this purpose we use several Byte Pair Encoding models, with various merge operations used in their configuration. In our experiments, we use this technique to expand the available data and improve an MT system involving a low-resource language pair, namely English-Esperanto. As an additional contribution, we made available a set of English-Esperanto parallel data in the literary domain.

pdf bib
A Tool for Facilitating OCR Postediting in Historical Documents
Alberto Poncelas | Mohammad Aboomar | Jan Buts | James Hadley | Andy Way
Proceedings of LT4HALA 2020 - 1st Workshop on Language Technologies for Historical and Ancient Languages

Optical character recognition (OCR) for historical documents is a complex procedure subject to a unique set of material issues, including inconsistencies in typefaces and low quality scanning. Consequently, even the most sophisticated OCR engines produce errors. This paper reports on a tool built for postediting the output of Tesseract, more specifically for correcting common errors in digitized historical documents. The proposed tool suggests alternatives for word forms not found in a specified vocabulary. The assumed error is replaced by a presumably correct alternative in the post-edition based on the scores of a Language Model (LM). The tool is tested on a chapter of the book An Essay Towards Regulating the Trade and Employing the Poor of this Kingdom (Cary, 1719). As demonstrated below, the tool is successful in correcting a number of common errors. If sometimes unreliable, it is also transparent and subject to human intervention.

pdf bib
Multiple Segmentations of Thai Sentences for Neural Machine Translation
Alberto Poncelas | Wichaya Pidchamook | Chao-Hong Liu | James Hadley | Andy Way
Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)

Thai is a low-resource language, so it is often the case that data is not available in sufficient quantities to train an Neural Machine Translation (NMT) model which perform to a high level of quality. In addition, the Thai script does not use white spaces to delimit the boundaries between words, which adds more complexity when building sequence to sequence models. In this work, we explore how to augment a set of English–Thai parallel data by replicating sentence-pairs with different word segmentation methods on Thai, as training data for NMT model training. Using different merge operations of Byte Pair Encoding, different segmentations of Thai sentences can be obtained. The experiments show that combining these datasets, performance is improved for NMT models trained with a dataset that has been split using a supervised splitting tool.

pdf bib
Neural Machine Translation for translating into Croatian and Serbian
Maja Popović | Alberto Poncelas | Marija Brkic | Andy Way
Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects

In this work, we systematically investigate different set-ups for training of neural machine translation (NMT) systems for translation into Croatian and Serbian, two closely related South Slavic languages. We explore English and German as source languages, different sizes and types of training corpora, as well as bilingual and multilingual systems. We also explore translation of English IMDb user movie reviews, a domain/genre where only monolingual data are available. First, our results confirm that multilingual systems with joint target languages perform better. Furthermore, translation performance from English is much better than from German, partly because German is morphologically more complex and partly because the corpus consists mostly of parallel human translations instead of original text and its human translation. The translation from German should be further investigated systematically. For translating user reviews, creating synthetic in-domain parallel data through back- and forward-translation and adding them to a small out-of-domain parallel corpus can yield performance comparable with a system trained on a full out-of-domain corpus. However, it is still not clear what is the optimal size of synthetic in-domain data, especially for forward-translated data where the target language is machine translated. More detailed research including manual evaluation and analysis is needed in this direction.

pdf bib
Neural Machine Translation between similar South-Slavic languages
Maja Popović | Alberto Poncelas
Proceedings of the Fifth Conference on Machine Translation

This paper describes the ADAPT-DCU machine translation systems built for the WMT 2020 shared task on Similar Language Translation. We explored several set-ups for NMT for Croatian–Slovenian and Serbian–Slovenian language pairs in both translation directions. Our experiments focus on different amounts and types of training data: we first apply basic filtering on the OpenSubtitles training corpora, then we perform additional cleaning of remaining misaligned segments based on character n-gram matching. Finally, we make use of additional monolingual data by creating synthetic parallel data through back-translation. Automatic evaluation shows that multilingual systems with joint Serbian and Croatian data are better than bilingual, as well as that character-based cleaning leads to improved scores while using less data. The results also confirm once more that adding back-translated data further improves the performance, especially when the synthetic data is similar to the desired domain of the development and test set. This, however, might come at a price of prolonged training time, especially for multitarget systems.

2019

pdf bib
Combining PBSMT and NMT Back-translated Data for Efficient NMT
Alberto Poncelas | Maja Popović | Dimitar Shterionov | Gideon Maillette de Buy Wenniger | Andy Way
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

Neural Machine Translation (NMT) models achieve their best performance when large sets of parallel data are used for training. Consequently, techniques for augmenting the training set have become popular recently. One of these methods is back-translation, which consists on generating synthetic sentences by translating a set of monolingual, target-language sentences using a Machine Translation (MT) model. Generally, NMT models are used for back-translation. In this work, we analyze the performance of models when the training data is extended with synthetic data using different MT approaches. In particular we investigate back-translated data generated not only by NMT but also by Statistical Machine Translation (SMT) models and combinations of both. The results reveal that the models achieve the best performances when the training set is augmented with back-translated data created by merging different MT approaches.

pdf bib
Transductive Data-Selection Algorithms for Fine-Tuning Neural Machine Translation
Alberto Poncelas | Gideon Maillette de Buy Wenniger | Andy Way
Proceedings of the 8th Workshop on Patent and Scientific Literature Translation

pdf bib
Selecting Artificially-Generated Sentences for Fine-Tuning Neural Machine Translation
Alberto Poncelas | Andy Way
Proceedings of the 12th International Conference on Natural Language Generation

Neural Machine Translation (NMT) models tend to achieve the best performances when larger sets of parallel sentences are provided for training. For this reason, augmenting the training set with artificially-generated sentence pair can boost the performance. Nonetheless, the performance can also be improved with a small number of sentences if they are in the same domain as the test set. Accordingly, we want to explore the use of artificially-generated sentence along with data-selection algorithms to improve NMT models trained solely with authentic data. In this work, we show how artificially-generated sentences can be more beneficial than authentic pairs and what are their advantages when used in combination with data-selection algorithms.

2018

pdf bib
Feature Decay Algorithms for Neural Machine Translation
Alberto Poncelas | Gideon Maillette de Buy Wenniger | Andy Way
Proceedings of the 21st Annual Conference of the European Association for Machine Translation

Neural Machine Translation (NMT) systems require a lot of data to be competitive. For this reason, data selection techniques are used only for finetuning systems that have been trained with larger amounts of data. In this work we aim to use Feature Decay Algorithms (FDA) data selection techniques not only to fine-tune a system but also to build a complete system with less data. Our findings reveal that it is possible to find a subset of sentence pairs, that outperforms by 1.11 BLEU points the full training corpus, when used for training a German-English NMT system .

pdf bib
Investigating Backtranslation in Neural Machine Translation
Alberto Poncelas | Dimitar Shterionov | Andy Way | Gideon Maillette de Buy Wenniger | Peyman Passban
Proceedings of the 21st Annual Conference of the European Association for Machine Translation

A prerequisite for training corpus-based machine translation (MT) systems – either Statistical MT (SMT) or Neural MT (NMT) – is the availability of high-quality parallel data. This is arguably more important today than ever before, as NMT has been shown in many studies to outperform SMT, but mostly when large parallel corpora are available; in cases where data is limited, SMT can still outperform NMT. Recently researchers have shown that back-translating monolingual data can be used to create synthetic parallel corpora, which in turn can be used in combination with authentic parallel data to train a highquality NMT system. Given that large collections of new parallel text become available only quite rarely, backtranslation has become the norm when building state-of-the-art NMT systems, especially in resource-poor scenarios. However, we assert that there are many unknown factors regarding the actual effects of back-translated data on the translation capabilities of an NMT model. Accordingly, in this work we investigate how using back-translated data as a training corpus – both as a separate standalone dataset as well as combined with human-generated parallel data – affects the performance of an NMT model. We use incrementally larger amounts of back-translated data to train a range of NMT systems for German-to-English, and analyse the resulting translation performance.

pdf bib
The ADAPT System Description for the IWSLT 2018 Basque to English Translation Task
Alberto Poncelas | Andy Way | Kepa Sarasola
Proceedings of the 15th International Conference on Spoken Language Translation

In this paper we present the ADAPT system built for the Basque to English Low Resource MT Evaluation Campaign. Basque is a low-resourced, morphologically-rich language. This poses a challenge for Neural Machine Translation models which usually achieve better performance when trained with large sets of data. Accordingly, we used synthetic data to improve the translation quality produced by a model built using only authentic data. Our proposal uses back-translated data to: (a) create new sentences, so the system can be trained with more data; and (b) translate sentences that are close to the test set, so the model can be fine-tuned to the document to be translated.

pdf bib
Data Selection with Feature Decay Algorithms Using an Approximated Target Side
Alberto Poncelas | Gideon Maillette de Buy Wenniger | Andy Way
Proceedings of the 15th International Conference on Spoken Language Translation

Data selection techniques applied to neural machine translation (NMT) aim to increase the performance of a model by retrieving a subset of sentences for use as training data. One of the possible data selection techniques are transductive learning methods, which select the data based on the test set, i.e. the document to be translated. A limitation of these methods to date is that using the source-side test set does not by itself guarantee that sentences are selected with correct translations, or translations that are suitable given the test-set domain. Some corpora, such as subtitle corpora, may contain parallel sentences with inaccurate translations caused by localization or length restrictions. In order to try to fix this problem, in this paper we propose to use an approximated target-side in addition to the source-side when selecting suitable sentence-pairs for training a model. This approximated target-side is built by pre-translating the source-side. In this work, we explore the performance of this general idea for one specific data selection approach called Feature Decay Algorithms (FDA). We train German-English NMT models on data selected by using the test set (source), the approximated target side, and a mixture of both. Our findings reveal that models built using a combination of outputs of FDA (using the test set and an approximated target side) perform better than those solely using the test set. We obtain a statistically significant improvement of more than 1.5 BLEU points over a model trained with all data, and more than 0.5 BLEU points over a strong FDA baseline that uses source-side information only.

pdf bib
SMT versus NMT: Preliminary comparisons for Irish
Meghan Dowling | Teresa Lynn | Alberto Poncelas | Andy Way
Proceedings of the AMTA 2018 Workshop on Technologies for MT of Low Resource Languages (LoResMT 2018)

pdf bib
Extracting In-domain Training Corpora for Neural Machine Translation Using Data Selection Methods
Catarina Cruz Silva | Chao-Hong Liu | Alberto Poncelas | Andy Way
Proceedings of the Third Conference on Machine Translation: Research Papers

Data selection is a process used in selecting a subset of parallel data for the training of machine translation (MT) systems, so that 1) resources for training might be reduced, 2) trained models could perform better than those trained with the whole corpus, and/or 3) trained models are more tailored to specific domains. It has been shown that for statistical MT (SMT), the use of data selection helps improve the MT performance significantly. In this study, we reviewed three data selection approaches for MT, namely Term Frequency– Inverse Document Frequency, Cross-Entropy Difference and Feature Decay Algorithm, and conducted experiments on Neural Machine Translation (NMT) with the selected data using the three approaches. The results showed that for NMT systems, using data selection also improved the performance, though the gain is not as much as for SMT systems.

2017

pdf bib
IJCNLP-2017 Task 4: Customer Feedback Analysis
Chao-Hong Liu | Yasufumi Moriya | Alberto Poncelas | Declan Groves
Proceedings of the IJCNLP 2017, Shared Tasks

This document introduces the IJCNLP 2017 Shared Task on Customer Feedback Analysis. In this shared task we have prepared corpora of customer feedback in four languages, i.e. English, French, Spanish and Japanese. They were annotated in a common meanings categorization, which was improved from an ADAPT-Microsoft pivot study on customer feedback. Twenty teams participated in the shared task and twelve of them have submitted prediction results. The results show that performance of prediction meanings of customer feedback is reasonable well in four languages. Nine system description papers are archived in the shared tasks proceeding.

pdf bib
ADAPT Centre Cone Team at IJCNLP-2017 Task 5: A Similarity-Based Logistic Regression Approach to Multi-choice Question Answering in an Examinations Shared Task
Daria Dzendzik | Alberto Poncelas | Carl Vogel | Qun Liu
Proceedings of the IJCNLP 2017, Shared Tasks

We describe the work of a team from the ADAPT Centre in Ireland in addressing automatic answer selection for the Multi-choice Question Answering in Examinations shared task. The system is based on a logistic regression over the string similarities between question, answer, and additional text. We obtain the highest grade out of six systems: 48.7% accuracy on a validation set (vs. a baseline of 29.45%) and 45.6% on a test set.