Aleem Khan


2024

pdf bib
Defending Against Disinformation Attacks in Open-Domain Question Answering
Orion Weller | Aleem Khan | Nathaniel Weir | Dawn Lawrie | Benjamin Van Durme
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

Recent work in open-domain question answering (ODQA) has shown that adversarial poisoning of the search collection can cause large drops in accuracy for production systems. However, little to no work has proposed methods to defend against these attacks. To do so, we rely on the intuition that redundant information often exists in large corpora. To find it, we introduce a method that uses query augmentation to search for a diverse set of passages that could answer the original question but are less likely to have been poisoned. We integrate these new passages into the model through the design of a novel confidence method, comparing the predicted answer to its appearance in the retrieved contexts (what we call Confidence from Answer Redundancy, i.e. CAR). Together these methods allow for a simple but effective way to defend against poisoning attacks that provides gains of nearly 20% exact match across varying levels of data poisoning/knowledge conflicts.

2021

pdf bib
A Deep Metric Learning Approach to Account Linking
Aleem Khan | Elizabeth Fleming | Noah Schofield | Marcus Bishop | Nicholas Andrews
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We consider the task of linking social media accounts that belong to the same author in an automated fashion on the basis of the content and meta-data of the corresponding document streams. We focus on learning an embedding that maps variable-sized samples of user activity–ranging from single posts to entire months of activity–to a vector space, where samples by the same author map to nearby points. Our approach does not require human-annotated data for training purposes, which allows us to leverage large amounts of social media content. The proposed model outperforms several competitive baselines under a novel evaluation framework modeled after established recognition benchmarks in other domains. Our method achieves high linking accuracy, even with small samples from accounts not seen at training time, a prerequisite for practical applications of the proposed linking framework.

pdf bib
Learning Universal Authorship Representations
Rafael A. Rivera-Soto | Olivia Elizabeth Miano | Juanita Ordonez | Barry Y. Chen | Aleem Khan | Marcus Bishop | Nicholas Andrews
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Determining whether two documents were composed by the same author, also known as authorship verification, has traditionally been tackled using statistical methods. Recently, authorship representations learned using neural networks have been found to outperform alternatives, particularly in large-scale settings involving hundreds of thousands of authors. But do such representations learned in a particular domain transfer to other domains? Or are these representations inherently entangled with domain-specific features? To study these questions, we conduct the first large-scale study of cross-domain transfer for authorship verification considering zero-shot transfers involving three disparate domains: Amazon reviews, fanfiction short stories, and Reddit comments. We find that although a surprising degree of transfer is possible between certain domains, it is not so successful between others. We examine properties of these domains that influence generalization and propose simple but effective methods to improve transfer.