Aleksandar Shtedritski


pdf bib
A Prompt Array Keeps the Bias Away: Debiasing Vision-Language Models with Adversarial Learning
Hugo Berg | Siobhan Hall | Yash Bhalgat | Hannah Kirk | Aleksandar Shtedritski | Max Bain
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Vision-language models can encode societal biases and stereotypes, but there are challenges to measuring and mitigating these multimodal harms due to lacking measurement robustness and feature degradation. To address these challenges, we investigate bias measures and apply ranking metrics for image-text representations. We then investigate debiasing methods and show that prepending learned embeddings to text queries that are jointly trained with adversarial debiasing and a contrastive loss, reduces various bias measures with minimal degradation to the image-text representation.


pdf bib
Memes in the Wild: Assessing the Generalizability of the Hateful Memes Challenge Dataset
Hannah Kirk | Yennie Jun | Paulius Rauba | Gal Wachtel | Ruining Li | Xingjian Bai | Noah Broestl | Martin Doff-Sotta | Aleksandar Shtedritski | Yuki M Asano
Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)

Hateful memes pose a unique challenge for current machine learning systems because their message is derived from both text- and visual-modalities. To this effect, Facebook released the Hateful Memes Challenge, a dataset of memes with pre-extracted text captions, but it is unclear whether these synthetic examples generalize to ‘memes in the wild’. In this paper, we collect hateful and non-hateful memes from Pinterest to evaluate out-of-sample performance on models pre-trained on the Facebook dataset. We find that ‘memes in the wild’ differ in two key aspects: 1) Captions must be extracted via OCR, injecting noise and diminishing performance of multimodal models, and 2) Memes are more diverse than ‘traditional memes’, including screenshots of conversations or text on a plain background. This paper thus serves as a reality-check for the current benchmark of hateful meme detection and its applicability for detecting real world hate.