Aleksander Ficek
2024
GPT vs RETRO: Exploring the Intersection of Retrieval and Parameter-Efficient Fine-Tuning
Aleksander Ficek
|
Jiaqi Zeng
|
Oleksii Kuchaiev
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Parameter-Efficient Fine-Tuning (PEFT) and Retrieval-Augmented Generation (RAG) have become popular methods for adapting large language models while minimizing compute requirements. In this paper, we apply PEFT methods (P-tuning, Adapters, and LoRA) to a modified Retrieval-Enhanced Transformer (RETRO) and a baseline GPT model across several sizes, ranging from 823 million to 48 billion parameters. We show that RETRO models outperform GPT models in zero-shot settings due to their unique pre-training process but GPT models have higher performance potential with PEFT. Additionally, our study indicates that 8B parameter models strike an optimal balance between cost and performance and P-tuning lags behind other PEFT techniques. We further provide a comparative analysis of between applying PEFT to Instruction-tuned RETRO model and base RETRO model. This work presents the first comprehensive comparison of various PEFT methods integrated with RAG, applied to both GPT and RETRO models, highlighting their relative performance.
2022
How to tackle an emerging topic? Combining strong and weak labels for Covid news NER
Aleksander Ficek
|
Fangyu Liu
|
Nigel Collier
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
Being able to train Named Entity Recognition (NER) models for emerging topics is crucial for many real-world applications especially in the medical domain where new topics are continuously evolving out of the scope of existing models and datasets. For a realistic evaluation setup, we introduce a novel COVID-19 news NER dataset (COVIDNEWS-NER) and release 3000 entries of hand annotated strongly labelled sentences and 13000 auto-generated weakly labelled sentences. Besides the dataset, we propose CONTROSTER, a recipe to strategically combine weak and strong labels in improving NER in an emerging topic through transfer learning. We show the effectiveness of CONTROSTER on COVIDNEWS-NER while providing analysis on combining weak and strong labels for training. Our key findings are: (1) Using weak data to formulate an initial backbone before tuning on strong data outperforms methods trained on only strong or weak data. (2) A combination of out-of-domain and in-domain weak label training is crucial and can overcome saturation when being training on weak labels from a single source.