Alessandro Cattelan


2020

pdf bib
CEF Data Marketplace: Powering a Long-term Supply of Language Data
Amir Kamran | Dace Dzeguze | Jaap van der Meer | Milica Panic | Alessandro Cattelan | Daniele Patrioli | Luisa Bentivogli | Marco Turchi
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

We describe the CEF Data Marketplace project, which focuses on the development of a trading platform of translation data for language professionals: translators, machine translation (MT) developers, language service providers (LSPs), translation buyers and government bodies. The CEF Data Marketplace platform will be designed and built to manage and trade data for all languages and domains. This project will open a continuous and longterm supply of language data for MT and other machine learning applications.

pdf bib
TICO-19: the Translation Initiative for COvid-19
Antonios Anastasopoulos | Alessandro Cattelan | Zi-Yi Dou | Marcello Federico | Christian Federmann | Dmitriy Genzel | Franscisco Guzmán | Junjie Hu | Macduff Hughes | Philipp Koehn | Rosie Lazar | Will Lewis | Graham Neubig | Mengmeng Niu | Alp Öktem | Eric Paquin | Grace Tang | Sylwia Tur
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

The COVID-19 pandemic is the worst pandemic to strike the world in over a century. Crucial to stemming the tide of the SARS-CoV-2 virus is communicating to vulnerable populations the means by which they can protect themselves. To this end, the collaborators forming the Translation Initiative for COvid-19 (TICO-19) have made test and development data available to AI and MT researchers in 35 different languages in order to foster the development of tools and resources for improving access to information about COVID-19 in these languages. In addition to 9 high-resourced, ”pivot” languages, the team is targeting 26 lesser resourced languages, in particular languages of Africa, South Asia and South-East Asia, whose populations may be the most vulnerable to the spread of the virus. The same data is translated into all of the languages represented, meaning that testing or development can be done for any pairing of languages in the set. Further, the team is converting the test and development data into translation memories (TMXs) that can be used by localizers from and to any of the languages.

2015

pdf bib
The EXPERT project: Advancing the state of the art in hybrid translation technologies
Constantin Orasan | Alessandro Cattelan | Gloria Corpas Pastor | Josef van Genabith | Manuel Herranz | Juan José Arevalillo | Qun Liu | Khalil Sima’an | Lucia Specia
Proceedings of Translating and the Computer 37

2014

bib
MateCat: an open source CAT tool for MT post-editing
Marcello Federico | Nicola Bertoldi | Marco Trombetti | Alessandro Cattelan
Proceedings of the 11th Conference of the Association for Machine Translation in the Americas: Tutorials

bib
Working with MateCat: user manual and installation guide
Marcello Federico | Nicola Bertoldi | Marco Trombetti | Alessandro Cattelan
Proceedings of the 11th Conference of the Association for Machine Translation in the Americas: Tutorials

bib
MateCat: free, a new business model for CAT tools
Alessandro Cattelan
Proceedings of Translating and the Computer 36

pdf bib
The MateCat Tool
Marcello Federico | Nicola Bertoldi | Mauro Cettolo | Matteo Negri | Marco Turchi | Marco Trombetti | Alessandro Cattelan | Antonio Farina | Domenico Lupinetti | Andrea Martines | Alberto Massidda | Holger Schwenk | Loïc Barrault | Frederic Blain | Philipp Koehn | Christian Buck | Ulrich Germann
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations

2012

pdf bib
Measuring User Productivity in Machine Translation Enhanced Computer Assisted Translation
Marcello Federico | Alessandro Cattelan | Marco Trombetti
Proceedings of the 10th Conference of the Association for Machine Translation in the Americas: Research Papers

This paper addresses the problem of reliably measuring productivity gains by professional translators working with a machine translation enhanced computer assisted translation tool. In particular, we report on a field test we carried out with a commercial CAT tool in which translation memory matches were supplemented with suggestions from a commercial machine translation engine. The field test was conducted with 12 professional translators working on real translation projects. Productivity of translators were measured with two indicators, post-editing speed and post-editing effort, on two translation directions, English–Italian and English–German, and two linguistic domains, legal and information technology. Besides a detailed statistical analysis of the experimental results, we also discuss issues encountered in running the test.