Alessandro Seganti


2021

pdf bib
Multilingual Entity and Relation Extraction Dataset and Model
Alessandro Seganti | Klaudia Firląg | Helena Skowronska | Michał Satława | Piotr Andruszkiewicz
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We present a novel dataset and model for a multilingual setting to approach the task of Joint Entity and Relation Extraction. The SMiLER dataset consists of 1.1 M annotated sentences, representing 36 relations, and 14 languages. To the best of our knowledge, this is currently both the largest and the most comprehensive dataset of this type. We introduce HERBERTa, a pipeline that combines two independent BERT models: one for sequence classification, and the other for entity tagging. The model achieves micro F1 81.49 for English on this dataset, which is close to the current SOTA on CoNLL, SpERT.

2019

pdf bib
NLPR@SRPOL at SemEval-2019 Task 6 and Task 5: Linguistically enhanced deep learning offensive sentence classifier
Alessandro Seganti | Helena Sobol | Iryna Orlova | Hannam Kim | Jakub Staniszewski | Tymoteusz Krumholc | Krystian Koziel
Proceedings of the 13th International Workshop on Semantic Evaluation

The paper presents a system developed for the SemEval-2019 competition Task 5 hat- Eval Basile et al. (2019) (team name: LU Team) and Task 6 OffensEval Zampieri et al. (2019b) (team name: NLPR@SRPOL), where we achieved 2nd position in Subtask C. The system combines in an ensemble several models (LSTM, Transformer, OpenAI’s GPT, Random forest, SVM) with various embeddings (custom, ELMo, fastText, Universal Encoder) together with additional linguistic features (number of blacklisted words, special characters, etc.). The system works with a multi-tier blacklist and a large corpus of crawled data, annotated for general offensiveness. In the paper we do an extensive analysis of our results and show how the combination of features and embedding affect the performance of the models.