Alessandro Sordoni


pdf bib
Linguistic Dependencies and Statistical Dependence
Jacob Louis Hoover | Wenyu Du | Alessandro Sordoni | Timothy J. O’Donnell
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Are pairs of words that tend to occur together also likely to stand in a linguistic dependency? This empirical question is motivated by a long history of literature in cognitive science, psycholinguistics, and NLP. In this work we contribute an extensive analysis of the relationship between linguistic dependencies and statistical dependence between words. Improving on previous work, we introduce the use of large pretrained language models to compute contextualized estimates of the pointwise mutual information between words (CPMI). For multiple models and languages, we extract dependency trees which maximize CPMI, and compare to gold standard linguistic dependencies. Overall, we find that CPMI dependencies achieve an unlabelled undirected attachment score of at most ≈ 0.5. While far above chance, and consistently above a non-contextualized PMI baseline, this score is generally comparable to a simple baseline formed by connecting adjacent words. We analyze which kinds of linguistic dependencies are best captured in CPMI dependencies, and also find marked differences between the estimates of the large pretrained language models, illustrating how their different training schemes affect the type of dependencies they capture.

pdf bib
Self-training with Few-shot Rationalization
Meghana Moorthy Bhat | Alessandro Sordoni | Subhabrata Mukherjee
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

While pre-trained language models have obtained state-of-the-art performance for several natural language understanding tasks, they are quite opaque in terms of their decision-making process. While some recent works focus on rationalizing neural predictions by highlighting salient concepts in the text as justifications or rationales, they rely on thousands of labeled training examples for both task labels as well as annotated rationales for every instance. Such extensive large-scale annotations are infeasible to obtain for many tasks. To this end, we develop a multi-task teacher-student framework based on self-training pre-trained language models with limited task-specific labels and rationales and judicious sample selection to learn from informative pseudo-labeled examples. We study several characteristics of what constitutes a good rationale and demonstrate that the neural model performance can be significantly improved by making it aware of its rationalized predictions, particularly in low-resource settings. Extensive experiments in several benchmark datasets demonstrate the effectiveness of our approach.

pdf bib
Understanding by Understanding Not: Modeling Negation in Language Models
Arian Hosseini | Siva Reddy | Dzmitry Bahdanau | R Devon Hjelm | Alessandro Sordoni | Aaron Courville
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Negation is a core construction in natural language. Despite being very successful on many tasks, state-of-the-art pre-trained language models often handle negation incorrectly. To improve language models in this regard, we propose to augment the language modeling objective with an unlikelihood objective that is based on negated generic sentences from a raw text corpus. By training BERT with the resulting combined objective we reduce the mean top 1 error rate to 4% on the negated LAMA dataset. We also see some improvements on the negated NLI benchmarks.

pdf bib
Explicitly Modeling Syntax in Language Models with Incremental Parsing and a Dynamic Oracle
Yikang Shen | Shawn Tan | Alessandro Sordoni | Siva Reddy | Aaron Courville
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Syntax is fundamental to our thinking about language. Failing to capture the structure of input language could lead to generalization problems and over-parametrization. In the present work, we propose a new syntax-aware language model: Syntactic Ordered Memory (SOM). The model explicitly models the structure with an incremental parser and maintains the conditional probability setting of a standard language model (left-to-right). To train the incremental parser and avoid exposure bias, we also propose a novel dynamic oracle, so that SOM is more robust to wrong parsing decisions. Experiments show that SOM can achieve strong results in language modeling, incremental parsing, and syntactic generalization tests while using fewer parameters than other models.

pdf bib
Increasing Robustness to Spurious Correlations using Forgettable Examples
Yadollah Yaghoobzadeh | Soroush Mehri | Remi Tachet des Combes | T. J. Hazen | Alessandro Sordoni
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Neural NLP models tend to rely on spurious correlations between labels and input features to perform their tasks. Minority examples, i.e., examples that contradict the spurious correlations present in the majority of data points, have been shown to increase the out-of-distribution generalization of pre-trained language models. In this paper, we first propose using example forgetting to find minority examples without prior knowledge of the spurious correlations present in the dataset. Forgettable examples are instances either learned and then forgotten during training or never learned. We show empirically how these examples are related to minorities in our training sets. Then, we introduce a new approach to robustify models by fine-tuning our models twice, first on the full training data and second on the minorities only. We obtain substantial improvements in out-of-distribution generalization when applying our approach to the MNLI, QQP and FEVER datasets.

pdf bib
The Emergence of the Shape Bias Results from Communicative Efficiency
Eva Portelance | Michael C. Frank | Dan Jurafsky | Alessandro Sordoni | Romain Laroche
Proceedings of the 25th Conference on Computational Natural Language Learning

By the age of two, children tend to assume that new word categories are based on objects’ shape, rather than their color or texture; this assumption is called the shape bias. They are thought to learn this bias by observing that their caregiver’s language is biased towards shape based categories. This presents a chicken and egg problem: if the shape bias must be present in the language in order for children to learn it, how did it arise in language in the first place? In this paper, we propose that communicative efficiency explains both how the shape bias emerged and why it persists across generations. We model this process with neural emergent language agents that learn to communicate about raw pixelated images. First, we show that the shape bias emerges as a result of efficient communication strategies employed by agents. Second, we show that pressure brought on by communicative need is also necessary for it to persist across generations; simply having a shape bias in an agent’s input language is insufficient. These results suggest that, over and above the operation of other learning strategies, the shape bias in human learners may emerge and be sustained by communicative pressures.


pdf bib
Exploring and Predicting Transferability across NLP Tasks
Tu Vu | Tong Wang | Tsendsuren Munkhdalai | Alessandro Sordoni | Adam Trischler | Andrew Mattarella-Micke | Subhransu Maji | Mohit Iyyer
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Recent advances in NLP demonstrate the effectiveness of training large-scale language models and transferring them to downstream tasks. Can fine-tuning these models on tasks other than language modeling further improve performance? In this paper, we conduct an extensive study of the transferability between 33 NLP tasks across three broad classes of problems (text classification, question answering, and sequence labeling). Our results show that transfer learning is more beneficial than previously thought, especially when target task data is scarce, and can improve performance even with low-data source tasks that differ substantially from the target task (e.g., part-of-speech tagging transfers well to the DROP QA dataset). We also develop task embeddings that can be used to predict the most transferable source tasks for a given target task, and we validate their effectiveness in experiments controlled for source and target data size. Overall, our experiments reveal that factors such as data size, task and domain similarity, and task complexity all play a role in determining transferability.

pdf bib
Recursive Top-Down Production for Sentence Generation with Latent Trees
Shawn Tan | Yikang Shen | Alessandro Sordoni | Aaron Courville | Timothy J. O’Donnell
Findings of the Association for Computational Linguistics: EMNLP 2020

We model the recursive production property of context-free grammars for natural and synthetic languages. To this end, we present a dynamic programming algorithm that marginalises over latent binary tree structures with N leaves, allowing us to compute the likelihood of a sequence of N tokens under a latent tree model, which we maximise to train a recursive neural function. We demonstrate performance on two synthetic tasks: SCAN, where it outperforms previous models on the LENGTH split, and English question formation, where it performs comparably to decoders with the ground-truth tree structure. We also present experimental results on German-English translation on the Multi30k dataset, and qualitatively analyse the induced tree structures our model learns for the SCAN tasks and the German-English translation task.


pdf bib
Learning Hierarchical Structures On-The-Fly with a Recurrent-Recursive Model for Sequences
Athul Paul Jacob | Zhouhan Lin | Alessandro Sordoni | Yoshua Bengio
Proceedings of The Third Workshop on Representation Learning for NLP

We propose a hierarchical model for sequential data that learns a tree on-the-fly, i.e. while reading the sequence. In the model, a recurrent network adapts its structure and reuses recurrent weights in a recursive manner. This creates adaptive skip-connections that ease the learning of long-term dependencies. The tree structure can either be inferred without supervision through reinforcement learning, or learned in a supervised manner. We provide preliminary experiments in a novel Math Expression Evaluation (MEE) task, which is created to have a hierarchical tree structure that can be used to study the effectiveness of our model. Additionally, we test our model in a well-known propositional logic and language modelling tasks. Experimental results have shown the potential of our approach.

pdf bib
Straight to the Tree: Constituency Parsing with Neural Syntactic Distance
Yikang Shen | Zhouhan Lin | Athul Paul Jacob | Alessandro Sordoni | Aaron Courville | Yoshua Bengio
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this work, we propose a novel constituency parsing scheme. The model first predicts a real-valued scalar, named syntactic distance, for each split position in the sentence. The topology of grammar tree is then determined by the values of syntactic distances. Compared to traditional shift-reduce parsing schemes, our approach is free from the potentially disastrous compounding error. It is also easier to parallelize and much faster. Our model achieves the state-of-the-art single model F1 score of 92.1 on PTB and 86.4 on CTB dataset, which surpasses the previous single model results by a large margin.


pdf bib
Machine Comprehension by Text-to-Text Neural Question Generation
Xingdi Yuan | Tong Wang | Caglar Gulcehre | Alessandro Sordoni | Philip Bachman | Saizheng Zhang | Sandeep Subramanian | Adam Trischler
Proceedings of the 2nd Workshop on Representation Learning for NLP

We propose a recurrent neural model that generates natural-language questions from documents, conditioned on answers. We show how to train the model using a combination of supervised and reinforcement learning. After teacher forcing for standard maximum likelihood training, we fine-tune the model using policy gradient techniques to maximize several rewards that measure question quality. Most notably, one of these rewards is the performance of a question-answering system. We motivate question generation as a means to improve the performance of question answering systems. Our model is trained and evaluated on the recent question-answering dataset SQuAD.

pdf bib
NewsQA: A Machine Comprehension Dataset
Adam Trischler | Tong Wang | Xingdi Yuan | Justin Harris | Alessandro Sordoni | Philip Bachman | Kaheer Suleman
Proceedings of the 2nd Workshop on Representation Learning for NLP

We present NewsQA, a challenging machine comprehension dataset of over 100,000 human-generated question-answer pairs. Crowdworkers supply questions and answers based on a set of over 10,000 news articles from CNN, with answers consisting of spans of text in the articles. We collect this dataset through a four-stage process designed to solicit exploratory questions that require reasoning. Analysis confirms that NewsQA demands abilities beyond simple word matching and recognizing textual entailment. We measure human performance on the dataset and compare it to several strong neural models. The performance gap between humans and machines (13.3% F1) indicates that significant progress can be made on NewsQA through future research. The dataset is freely available online.


pdf bib
Natural Language Comprehension with the EpiReader
Adam Trischler | Zheng Ye | Xingdi Yuan | Philip Bachman | Alessandro Sordoni | Kaheer Suleman
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing


pdf bib
deltaBLEU: A Discriminative Metric for Generation Tasks with Intrinsically Diverse Targets
Michel Galley | Chris Brockett | Alessandro Sordoni | Yangfeng Ji | Michael Auli | Chris Quirk | Margaret Mitchell | Jianfeng Gao | Bill Dolan
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

pdf bib
A Neural Network Approach to Context-Sensitive Generation of Conversational Responses
Alessandro Sordoni | Michel Galley | Michael Auli | Chris Brockett | Yangfeng Ji | Margaret Mitchell | Jian-Yun Nie | Jianfeng Gao | Bill Dolan
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies